1,160 research outputs found

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Joint dimensioning of server and network infrastructure for resilient optical grids/clouds

    Get PDF
    We address the dimensioning of infrastructure, comprising both network and server resources, for large-scale decentralized distributed systems such as grids or clouds. We design the resulting grid/cloud to be resilient against network link or server failures. To this end, we exploit relocation: Under failure conditions, a grid job or cloud virtual machine may be served at an alternate destination (i.e., different from the one under failure-free conditions). We thus consider grid/cloud requests to have a known origin, but assume a degree of freedom as to where they end up being served, which is the case for grid applications of the bag-of-tasks (BoT) type or hosted virtual machines in the cloud case. We present a generic methodology based on integer linear programming (ILP) that: 1) chooses a given number of sites in a given network topology where to install server infrastructure; and 2) determines the amount of both network and server capacity to cater for both the failure-free scenario and failures of links or nodes. For the latter, we consider either failure-independent (FID) or failure-dependent (FD) recovery. Case studies on European-scale networks show that relocation allows considerable reduction of the total amount of network and server resources, especially in sparse topologies and for higher numbers of server sites. Adopting a failure-dependent backup routing strategy does lead to lower resource dimensions, but only when we adopt relocation (especially for a high number of server sites): Without exploiting relocation, potential savings of FD versus FID are not meaningful

    The State-of-the-Art Survey on Optimization Methods for Cyber-physical Networks

    Full text link
    Cyber-Physical Systems (CPS) are increasingly complex and frequently integrated into modern societies via critical infrastructure systems, products, and services. Consequently, there is a need for reliable functionality of these complex systems under various scenarios, from physical failures due to aging, through to cyber attacks. Indeed, the development of effective strategies to restore disrupted infrastructure systems continues to be a major challenge. Hitherto, there have been an increasing number of papers evaluating cyber-physical infrastructures, yet a comprehensive review focusing on mathematical modeling and different optimization methods is still lacking. Thus, this review paper appraises the literature on optimization techniques for CPS facing disruption, to synthesize key findings on the current methods in this domain. A total of 108 relevant research papers are reviewed following an extensive assessment of all major scientific databases. The main mathematical modeling practices and optimization methods are identified for both deterministic and stochastic formulations, categorizing them based on the solution approach (exact, heuristic, meta-heuristic), objective function, and network size. We also perform keyword clustering and bibliographic coupling analyses to summarize the current research trends. Future research needs in terms of the scalability of optimization algorithms are discussed. Overall, there is a need to shift towards more scalable optimization solution algorithms, empowered by data-driven methods and machine learning, to provide reliable decision-support systems for decision-makers and practitioners

    Cyber-Physical Power System (CPPS): A Review on Modelling, Simulation, and Analysis with Cyber Security Applications

    Get PDF
    Cyber-Physical System (CPS) is a new kind of digital technology that increases its attention across academia, government, and industry sectors and covers a wide range of applications like agriculture, energy, medical, transportation, etc. The traditional power systems with physical equipment as a core element are more integrated with information and communication technology, which evolves into the Cyber-Physical Power System (CPPS). The CPPS consists of a physical system tightly integrated with cyber systems (control, computing, and communication functions) and allows the two-way flows of electricity and information for enabling smart grid technologies. Even though the digital technologies monitoring and controlling the electric power grid more efficiently and reliably, the power grid is vulnerable to cybersecurity risk and involves the complex interdependency between cyber and physical systems. Analyzing and resolving the problems in CPPS needs the modelling methods and systematic investigation of a complex interaction between cyber and physical systems. The conventional way of modelling, simulation, and analysis involves the separation of physical domain and cyber domain, which is not suitable for the modern CPPS. Therefore, an integrated framework needed to analyze the practical scenario of the unification of physical and cyber systems. A comprehensive review of different modelling, simulation, and analysis methods and different types of cyber-attacks, cybersecurity measures for modern CPPS is explored in this paper. A review of different types of cyber-attack detection and mitigation control schemes for the practical power system is presented in this paper. The status of the research in CPPS around the world and a new path for recommendations and research directions for the researchers working in the CPPS are finally presented.publishedVersio

    Resilience assessment and planning in power distribution systems:Past and future considerations

    Full text link
    Over the past decade, extreme weather events have significantly increased worldwide, leading to widespread power outages and blackouts. As these threats continue to challenge power distribution systems, the importance of mitigating the impacts of extreme weather events has become paramount. Consequently, resilience has become crucial for designing and operating power distribution systems. This work comprehensively explores the current landscape of resilience evaluation and metrics within the power distribution system domain, reviewing existing methods and identifying key attributes that define effective resilience metrics. The challenges encountered during the formulation, development, and calculation of these metrics are also addressed. Additionally, this review acknowledges the intricate interdependencies between power distribution systems and critical infrastructures, including information and communication technology, transportation, water distribution, and natural gas networks. It is important to understand these interdependencies and their impact on power distribution system resilience. Moreover, this work provides an in-depth analysis of existing research on planning solutions to enhance distribution system resilience and support power distribution system operators and planners in developing effective mitigation strategies. These strategies are crucial for minimizing the adverse impacts of extreme weather events and fostering overall resilience within power distribution systems.Comment: 27 pages, 7 figures, submitted for review to Renewable and Sustainable Energy Review
    • …
    corecore