41 research outputs found

    Highway Runoff Manual

    Get PDF
    shall, on the grounds of race, color, national origin, or sex, as provided by Title VI of the Civil Rights Act of 1964, be excluded from participation in, be denied the benefits of, or be otherwise discriminated against under any of its federally funded programs and activities. Any person who believes his/her Title VI protection has been violated may file a complaint with WSDOT’s Office of Equal Opportunity (OEO). For Title VI complaint forms and advice, please contact OEO’

    Setting the baseline for the modelling of Kesterite solar cells: The case study of tandem application

    Get PDF
    The Kesterite solar cells research landscape is at a crossroad and despite a much improved understanding of the limitations of this class of materials, the current performance deficit contrasts with the several other thin film technologies reaching conversion efficiency values well above 20%. It is more important than ever for the Kesterite community to collaborate directly or indirectly and data sharing is an essential building block in that regard. This work proposes a detailed set of modelling baselines and parameters, based on a consistent set of properties obtained with experimental devices made by our group. These parameters permit to accurately reproduce all photovoltaic figures of merits of reference experimental Kesterite cells with a relative accuracy of 1% or less. As a case study, and using optical modelling based on the transfer matrix method in complement, the potential of Kesterite materials in tandem devices with either a Perovskite or a Crystalline Silicon partner is evaluated. It is found that a moderate improvement of pure selenium CZTSe, feasible in the short to middle term, would realistically permit to use this material as bottom subcell in tandem with a Perovskite top cell and obtain efficiencies reaching the 30% threshold. On the other hand, using a Kesterite absorber in a top subcell with a silicon bottom subcell appears as particularly ambitious even when considering several important optimizations to the material, and it is believed that only an important breakthrough would render this material viable for such application. The complete set of material parameters, optical indices and modelling files are shared for the Kesterite community to use and build improve upon

    Doctor of Philosophy

    Get PDF
    dissertationCu(In,Ga)Se2 (CIGSe), CuZnSn(S,Se)4 (CZTSSe), etc., are the potential chalcogenide semiconductors being investigated for next-generation thin film photovoltaics (TFPV). While the champion cell efficiency of CIGSe has exceeded 20%, CZTSSe has crossed the 10% mark. This work investigates the effect of laser annealing on CISe films, and compares the electrical characteristics of CIGSe (chalcopyrite) and CZTSe (kesterite) solar cells. Chapter 1 through 3 provide a background on semiconductors and TFPV, properties of chalcopyrite and kesterite materials, and their characterization using deep level transient spectroscopy (DLTS) and thermal admittance spectroscopy (TAS). Chapter 4 investigates electrochemical deposition (nonvacuum synthesis) of CISe followed by continuous wave laser annealing (CWLA) using a 1064 nm laser. It is found that CWLA at ~ 50 W/cm2 results in structural changes without melting and dewetting of the films. While Cu-poor samples show about 40% reduction in the full width at half maximum of the respective x-ray diffraction peaks, identically treated Cu-rich samples register more than 80% reduction. This study demonstrates that an entirely solid-phase laser annealing path exists for chalcopyrite phase formation and crystallization. Chapter 5 investigates the changes in defect populations after pulse laser annealing in submelting regime of electrochemically deposited and furnace annealed CISe films. DLTS on Schottky diodes reveal that the ionization energy of the dominant majority carrier defect state changes nonmonotonically from 215±10 meV for the reference sample, to 330±10 meV for samples irradiated at 20 and 30 mJ/cm2, and then back to 215±10 meV for samples irradiated at 40 mJ/cm2. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior. Chapter 6 compares the electrical characteristics of chalcopyrite and kesterite materials. Experiments reveal CZTSe cell has an order of magnitude higher net carrier concentration and saturation current density, whereas five times smaller shunt resistance and depletion width at equilibrium compared to CIGSe. The TAS measurements suggest that the dielectric freezeout occurs at relatively higher temperatures (~ 150 K) and lower frequencies (< 1 MHz) for CZTSe cell. Both sample types show a broad DLTS signal, possibly indicating a parallel recombination process with carrier emissions

    Statistical multiplexing and connection admission control in ATM networks

    Get PDF
    Asynchronous Transfer Mode (ATM) technology is widely employed for the transport of network traffic, and has the potential to be the base technology for the next generation of global communications. Connection Admission Control (CAC) is the effective traffic control mechanism which is necessary in ATM networks in order to avoid possible congestion at each network node and to achieve the Quality-of-Service (QoS) requested by each connection. CAC determines whether or not the network should accept a new connection. A new connection will only be accepted if the network has sufficient resources to meet its QoS requirements without affecting the QoS commitments already made by the network for existing connections. The design of a high-performance CAC is based on an in-depth understanding of the statistical characteristics of the traffic sources

    An Energy Efficient Simultaneous-Node Repositioning Algorithm for Mobile Sensor Networks

    Get PDF
    Recently, wireless sensor network (WSN) applications have seen an increase in interest. In search and rescue, battlefield reconnaissance, and some other such applications, so that a survey of the area of interest can be made collectively, a set of mobile nodes is deployed. Keeping the network nodes connected is vital for WSNs to be effective. The provision of connectivity can be made at the time of startup and can be maintained by carefully coordinating the nodes when they move. However, if a node suddenly fails, the network could be partitioned to cause communication problems. Recently, several methods that use the relocation of nodes for connectivity restoration have been proposed. However, these methods have the tendency to not consider the potential coverage loss in some locations. This paper addresses the concerns of both connectivity and coverage in an integrated way so that this gap can be filled. A novel algorithm for simultaneous-node repositioning is introduced. In this approach, each neighbour of the failed node, one by one, moves in for a certain amount of time to take the place of the failed node, after which it returns to its original location in the network. The effectiveness of this algorithm has been verified by the simulation results

    Full Proceedings, 2018

    Get PDF
    Full conference proceedings for the 2018 International Building Physics Association Conference hosted at Syracuse University

    Investigation of a super performance dew point air cooler and its application in buildings

    Get PDF
    Based on extensive literature reviews, technical opportunities were identified to improve the energy efficiency of a dew point air cooler. This applied research aimed to develop a super-performance dew point air cooler to replace or partly replace the conventional energy-intensive air conditioners applicable to buildings.This research followed the methodology of combined theoretical and experimental investigation and a procedure of concept formation, validating and updating. A simulation software was developed and validated to investigate the impacts of the geometric configuration and operational conditions on the unit’s cooling performance and assist the prototype design. As a result, a novel dew point air cooler prototype, featuring innovative structure of the heat and mass exchanger, application of new materials and new processes, unique water distribution and control scheme and exclusive self-developed simulation software, was constructed and tested under controlled laboratory environment. Two patents were generated, one of which has been authorized by the China State Intellectual Property Office and the other has been filed in the Intellectual Property Office of the United Kingdom.Under standard testing conditions, i.e. dry-bulb temperature of 37.8oC and the coincident wet-bulb temperature of 21.1oC, the prototype cooler achieved a wet-bulb cooling effectiveness of 114% and dew-point cooling effectiveness of 75%, yielding a significantly high Coefficient of Performance (COP) of 52.5 at the optimal working air ratio of 0.364. The performance testing was also carried out under various simulated conditions representing the climates of hot & dry, warm & dry, moderate, warm & humid and the wet-bulb effectiveness of the prototype kept in the range 112% to 128% and dew-point effectiveness of 67%-76%, giving a COP of 37.4-52.5. Compared to the conventional vapour compression air conditioners which have a COP of around 3, the prototype cooler had 11-17 times higher COP, leading to a reduction in electrical power consumption by around 92% to 94%.A dedicated case study of the proposed dew point cooler based on conditions in Beijing, a representative city in warm and humid climate, was carried out to predict the annual operational performance, economic rewards, and associated environmental benefits. Compared to the conventional packaged air conditioners, 91.4% of annual power demand could be saved. The annual water consumption is less than 0.3 tonnes to provide the cooling of 2428.1 kWh. And the payback period of static investments would be less than 4 years to replace an equivalent packaged air conditioner.A significant leap forward has been achieved with this study and this is expected to open enormous global business in the very near future, thus bringing about great economic, environmental and sustainability benefits worldwide

    Doctor of Philosophy

    Get PDF
    dissertationTrusted computing base (TCB) of a computer system comprises components that must be trusted in order to support its security policy. Research communities have identified the well-known minimal TCB principle, namely, the TCB of a system should be as small as possible, so that it can be thoroughly examined and verified. This dissertation is an experiment showing how small the TCB for an isolation service is based on software fault isolation (SFI) for small multitasking embedded systems. The TCB achieved by this dissertation includes just the formal definitions of isolation properties, instruction semantics, program logic, and a proof assistant, besides hardware. There is not a compiler, an assembler, a verifier, a rewriter, or an operating system in the TCB. To the best of my knowledge, this is the smallest TCB that has ever been shown for guaranteeing nontrivial properties of real binary programs on real hardware. This is accomplished by combining SFI techniques and high-confidence formal verification. An SFI implementation inserts dynamic checks before dangerous operations, and these checks provide necessary invariants needed by the formal verification to prove theorems about the isolation properties of ARM binary programs. The high-confidence assurance of the formal verification comes from two facts. First, the verification is based on an existing realistic semantics of the ARM ISA that is independently developed by Cambridge researchers. Second, the verification is conducted in a higher-order proof assistant-the HOL theorem prover, which mechanically checks every verification step by rigorous logic. In addition, the entire verification process, including both specification generation and verification, is automatic. To support proof automation, a novel program logic has been designed, and an automatic reasoning framework for verifying shallow safety properties has been developed. The program logic integrates Hoare-style reasoning and Floyd's inductive assertion reasoning together in a small set of definitions, which overcomes shortcomings of Hoare logic and facilitates proof automation. All inference rules of the logic are proven based on the instruction semantics and the logic definitions. The framework leverages abstract interpretation to automatically find function specifications required by the program logic. The results of the abstract interpretation are used to construct the function specifications automatically, and the specifications are proven without human interaction by utilizing intermediate theorems generated during the abstract interpretation. All these work in concert to create the very small TCB

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017
    corecore