46 research outputs found

    A combined first and second order variational approach for image reconstruction

    Full text link
    In this paper we study a variational problem in the space of functions of bounded Hessian. Our model constitutes a straightforward higher-order extension of the well known ROF functional (total variation minimisation) to which we add a non-smooth second order regulariser. It combines convex functions of the total variation and the total variation of the first derivatives. In what follows, we prove existence and uniqueness of minimisers of the combined model and present the numerical solution of the corresponding discretised problem by employing the split Bregman method. The paper is furnished with applications of our model to image denoising, deblurring as well as image inpainting. The obtained numerical results are compared with results obtained from total generalised variation (TGV), infimal convolution and Euler's elastica, three other state of the art higher-order models. The numerical discussion confirms that the proposed higher-order model competes with models of its kind in avoiding the creation of undesirable artifacts and blocky-like structures in the reconstructed images -- a known disadvantage of the ROF model -- while being simple and efficiently numerically solvable.Comment: 34 pages, 89 figure

    Explorations on anisotropic regularisation of dynamic inverse problems by bilevel optimisation

    Get PDF
    We explore anisotropic regularisation methods in the spirit of [Holler & Kunisch, 14]. Based on ground truth data, we propose a bilevel optimisation strategy to compute the optimal regularisation parameters of such a model for the application of video denoising. The optimisation poses a challenge in itself, as the dependency on one of the regularisation parameters is non-linear such that the standard existence and convergence theory does not apply. Moreover, we analyse numerical results of the proposed parameter learning strategy based on three exemplary video sequences and discuss the impact of these results on the actual modelling of dynamic inverse problems

    Strain Analysis by a Total Generalized Variation Regularized Optical Flow Model

    Full text link
    In this paper we deal with the important problem of estimating the local strain tensor from a sequence of micro-structural images realized during deformation tests of engineering materials. Since the strain tensor is defined via the Jacobian of the displacement field, we propose to compute the displacement field by a variational model which takes care of properties of the Jacobian of the displacement field. In particular we are interested in areas of high strain. The data term of our variational model relies on the brightness invariance property of the image sequence. As prior we choose the second order total generalized variation of the displacement field. This prior splits the Jacobian of the displacement field into a smooth and a non-smooth part. The latter reflects the material cracks. An additional constraint is incorporated to handle physical properties of the non-smooth part for tensile tests. We prove that the resulting convex model has a minimizer and show how a primal-dual method can be applied to find a minimizer. The corresponding algorithm has the advantage that the strain tensor is directly computed within the iteration process. Our algorithm is further equipped with a coarse-to-fine strategy to cope with larger displacements. Numerical examples with simulated and experimental data demonstrate the very good performance of our algorithm. In comparison to state-of-the-art engineering software for strain analysis our method can resolve local phenomena much better

    Learning Regularization Parameter-Maps for Variational Image Reconstruction Using Deep Neural Networks and Algorithm Unrolling

    Get PDF
    We introduce a method for the fast estimation of data-adapted, spatially and temporally dependent regularization parameter-maps for variational image reconstruction, focusing on total variation (TV) minimization. The proposed approach is inspired by recent developments in algorithm unrolling using deep neural networks (NNs) and relies on two distinct subnetworks. The first subnetwork estimates the regularization parameter-map from the input data. The second subnetwork unrolls iterations of an iterative algorithm which approximately solves the corresponding TV-minimization problem incorporating the previously estimated regularization parameter-map. The overall network is then trained end-to-end in a supervised learning fashion using pairs of clean and corrupted data but crucially without the need for access to labels for the optimal regularization parameter-maps. We first prove consistency of the unrolled scheme by showing that the unrolled minimizing energy functional used for the supervised learning -converges, as tends to infinity, to the corresponding functional that incorporates the exact solution map of the TV-minimization problem. Then, we apply and evaluate the proposed method on a variety of large-scale and dynamic imaging problems with retrospectively simulated measurement data for which the automatic computation of such regularization parameters has been so far challenging using the state-of-the-art methods: a 2D dynamic cardiac magnetic resonance imaging (MRI) reconstruction problem, a quantitative brain MRI reconstruction problem, a low-dose computed tomography problem, and a dynamic image denoising problem. The proposed method consistently improves the TV reconstructions using scalar regularization parameters, and the obtained regularization parameter-maps adapt well to imaging problems and data by leading to the preservation of detailed features. Although the choice of the regularization parameter-maps is data-driven and based on NNs, the subsequent reconstruction algorithm is interpretable since it inherits the properties (e.g., convergence guarantees) of the iterative reconstruction method from which the network is implicitly defined
    corecore