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1. Introduction

In this paper, we employ bilevel optimisation to explore different choices of spatial-
and temporal regularisation in a variational image reconstruction model.

Variational regularisation methods are extremely popular and versatile tools when
it comes to computing approximate solutions to ill-posed inverse problems. Given the
assumption of normal distributed noise, they usually have the form of a generalised
Tikhonov-type regularisation, i.e.

1
Uq € R(a) := argmin {||Ku —gll5+ G(u;a)} , (1.1)
weL?(@)nu L2

where K € L(L*(Q),L?*(X)) is a bounded, linear operator mapping from the Hilbert
space L?(f2) to the Hilbert space L(X), with Q and ¥ being bounded and connected
domains. The function g € L?(X) represents the given measurement data, and the
norm || - ||z simply denotes the L?(X)-norm. Given a signal u € U and regularisation
parameters o € V, the functional G : U xV — R represents the regulariser, for Banach
spaces U and V.

Particularly in imaging and image processing applications, proper, lower semi-
continuous (1.s.c), convex and non-smooth regularisers have attracted a lot of attention
over the last two decades. Various types of total variation regularisation [2] and ¢!
regularisation of unitary transformed signals [3] have been proposed, in order to exploit
sparsity of a signal with respect to a given representation.

Despite allowing for significant improvements in terms of reconstruction quality,
non-smooth regularisation methods suffer from introducing systematic modelling
artefacts like any other regularisation method; in case of total variation regularisation
for instance, the regularisation method is well-known to introduce piecewise constant
approximations of noisy, non-constant regions, which is known as the stair-casing effect
(cf. [4 Section 4.2]).

In order to compensate for modelling artefacts, the concept of infimal convolutions
can be used for combining the advantages of different regularisers into one. The infimal
convolution of two proper, l.s.c. and convex functionals J; and Js is defined as

(JlmJg)(’U,) = inf Jl(U) + JQ(’LU) (IC)
u=v+w
In 5] [6] [7, 8] it has been shown that an infimal convolution of the total variation and
a higher-order total variation is beneficial for fighting the stair-casing phenomenon,
and that infimal convolutions in general are useful in order to reconstruct functions
that are additive compositions of functions which can individually be recovered by
different regularisers.

Recently, infimal convolution has been considered as a suitable model for handling
dynamic inverse problems [I]. Holler and Kunisch have proposed to use infimal
convolution in order to combine regularisation functionals that are suitable for
either spatial or temporal regularisation, in order to create an appropriate spatio-
temporal regulariser. In particular, their model involves a regulariser G in which
constitutes an infimal-convolution of total variation functionals of weighted spatial
and temporal derivatives. This will be specified in Section [2] The use of an infimal
convolution between dominantly spatial and dominantly temporal regularisation terms
not only allows the reconstruction of a regularised dynamic image sequence, but
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also the decomposition of the latter into a sequence of images encoding dominantly
temporal information and another sequence encoding dominantly spatial information.

In what follows we want to learn optimal decompositions in this regularisation
in the context of video de-noising by an appropriate bilevel optimisation approach.
In the context of the associated bilevel learning problem we will discuss looks
for an optimal parameter vector o that solves for some convex, proper, weak* lower
semicontinuous cost functional F': X — R the problem

min F'(ua) (P)
subject to ue being a solution of .

In the context of computer vision and image processing bilevel optimisation is
considered as a supervised learning method that optimally adapts itself to a given
dataset of measurements and desirable solutions. In [9] [T0, 11} 12], for instance
the authors consider bilevel optimization for finite dimensional Markov random field
models. In inverse problems the optimal inversion and experimental acquisition setup
is discussed in the context of optimal model design in works by Haber, Horesh and
Tenorio [I3] [14], as well as Ghattas et al. [I5] [16]. Recently parameter learning in the
context of functional variational regularisation models also entered the image
processing community with works by the authors [17), 18], 9] 20} 2], 22], Kunisch,
Pock and co-workers [23] 24, 25], Chung et al. [26], Hintermiiller et al. [27] and
others [28] 29, [30]. Interesting recent works also include bilevel learning approaches
for image segmentation [31I], learning and optimal setup of support vector machines
[32] and learning discrete reaction-diffusion filters [33].

What we show is closest in flavour to recent applications of bilevel optimisation
to supervised learning of optimal parameters in a total variation type regularisation
model [34], 23] 35, [36]. The main difference in the theory and computational realisation
to these works and the model discussed in this paper is due to the nonlinear dependence
of the lower level problem on the parameter vector a that the model is optimised for.
To our knowledge, this is the first publication that deals with learning of non-linear
regularisation parameters in the context of regularisation of inverse problems.

The paper is organised as follows. First, we are going to recall the concept of
spatio-temporal regularisation via infimal convolutions of regularisers. Then, we are
going to present the bilevel optimisation framework for learning the regularisation
parameters of the infimal convolution regularisers. Subsequently, we are going to
address the numerical aspects of the parameter learning strategy. We then conclude
with numerical examples and their discussion. We particularly want to address the
question of how realistic the assumption of the coupling of the spatial and temporal
regularisation is, given three different types of images sequences.

2. Regularisation of dynamic inverse problems

Let g = (g1,---,9m) € L*(Q;R™). We denote by || + ||2,1 the L'(Q)-norm of the
two-norm of vector-valued functions, namely

lgllz = / lg(@)]l2 de,
Q
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where [|g(z)]2 = /g1(z)2 + ... + gm(z)2. Based on [I], we introduce the anisotropic
derivative V,; and its negative adjoint div, defined for a scalar x € (0,1) as

V= (na,ﬁa, (1- /{)a> , and

oxr’ 0Oy ot (2.1)
div _H2+l€2+(171€)g
" o Oy ot’

With these, and for u € WH(Q) we define the following dynamic regularisation
functionals: Here (IC-TVTV]) is a direct adaptation of the ICTV functional proposed

G (u; a1, a0, k) = u:lgl—fl‘-w a1]|Vevll2,1 + a2l Vickw|l21 (IC-TVTV)
G (war,az,k) = inf Vool + | Vimpw]lz. (IC-L2TV)
G (u; o1, a2) = a1||Vull2,1 + a2||%u\|1 (Rigid TVTV)
G (u; a1, q0) = %HVUH% + a2||%u||1 (Rigid L>TV)

Table 1: The different dynamic regularisers used throughout this paper.

in [I]. Regulariser is a modification that allows for different regularisation
models; in case we have picked two rather complementary regularisation functionals,
with the L? norm of the gradient complementing the total variation regularisation.
Regularisers (Rigid TVTV) and can almost be seen as limiting cases
of (IC-TVTV)) and (IC-L-TV]), respectively. Choosing x € {0,1} and restricting
solutions to v = w converts ([[C-TVTV) and ({[C-L>TV) into and
(Rigid L*TV]).

The basic motivation for these models is a decomposition of a dynamic image
sequence into a spatial and a temporal component, such that these components are
penalised individually with suitable regularisation functionals. However, in order
to allow for space-time correspondence in these sequences, an additional anisotropy
parameter k is introduced that ensures neither one of the components to be penalised
by the spatial or the temporal regulariser alone. Speaking of spatial and temporal
components, a spatial component is regularised in space only, whereas the temporal
component is regularised in only in time. In this corresponds to the extreme
cases k = 0 (only temporal regularisation) and x = 1 (only spatial regularisation).
The restriction to x € (0, 1), which further ensures spatial and temporal regularity in
both components, also guarantees well-posedness of (L.1).

A major challenge for successful regularisation of dynamic image sequences via
any of the regularisers listed in Table [I] is the ’optimal’ choice of parameters oy, as
and k. On the one hand, this is due to the number of parameters itself, making it
difficult to employ heuristic parameter choice rules that may succeed in case of single
parameters. On the other hand, the dependency of the model on the regularisation
parameter  is non-linear, making it even harder to optimise for.

Following |34}, 23, [35], 86], we propose a learning framework that allows to learn the
regularisation parameters from training data. As mentioned before, the key difference
is that the dependency of x is non-linear.
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3. Optimising the parameters—the theory

It is not immediately clear, which parameter choices for a;, as and k may be optimal
for dynamic inverse problems regularised by one of the anisotropic regularisers given
in Table[I] Parameter learning approaches, as discussed in the introduction, provide
a means towards studying optimal parameter choices with respect to a known ground
truth. We concentrate in particular on the bilevel optimisation framework, first
presented in [34] 23] and further studied in the context of multi-parameter regularisers
in |35, [36]. The general form therein is given as

1 1
min —||R(a) —g|l3 st. R(a)=argmin —|f — Kul3 +G (u;a). (3.1)
acP 2 weLl(Q) 2

Here ¢ denotes the vector of parameters we are optimising for, and P is our space
of allowed parameters; generally o = (v, az,k) with P = [0,00)% x [0,1] for the
infimal convolution regularisers, and o = (a3, as) with P = [0,00)? for the rigid
regularisers. Here, ||R(a)— g||2 is the cost functional F'(R(car)) measuring the distance
of the denoised solution R(a) from the ground truth original g, and G is a regulariser
for the lower level problem of reconstructing u from noisy f.

3.1. FEzistence of solutions

A general existence and convergence theory for solutions a to (3.1) is presented in
[35] when G is linear in e and defined over the space of bounded variation functions,
i.e. ||Vullz,1 in Table[l]is replaced by

sup / u(z) (divgy)(x) dz,
peC (rR™) Jo
llell2,00<1

where the notation || - ||2,00 is analogous to || - ||2,1, but with the L*°(£2)-norm replacing
the L'(Q)-norm. Our regularisers are not linear in x however, so an extended theory
would be needed. With an additional elliptic regularisation, however, we can still show
existence of solutions easily.

Proposition 3.1. Consider the problem

1 1 €
min —|R(a) —gl3 st R(a)=argmin —||f - Kul3+G (u;a) + = ||Vul?, (3.2)
acP 2 weLL(Q) 2 2

where G is one of the regularisers from Table[I, P the corresponding admissible set
of parameters, and € > 0. Suppose constant functions are not in the null space of K.
Then there exists an optimal solution e € P to (3.2).

Proof. Note that all regularisers presented in Table [I] are lower semi-continuous with
respect to the mutual convergence of a in R® and of u in L!. They are moreover
continuous with respect to a for fixed wu.

Let us first consider the inner problem

1
argmin J(wa) = = ||f — Kul2 + G (1 @) + <||Vu? (3.3)
weL1(Q) 2 2
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first. The term §||Vu||? and the fact that constant functions are not in the kernel of
K guarantees weak convergence in H'(Q) of a (subsequence of a) minimising sequence
{u*} regardless of the choice of  in the inner problem. This implies the convergence in
L', and consequently by the standard argument of calculus of variations, an existence
of a solution R(«) to the inner problem.

For a minimising sequence {a*} of the whole problem we therefore get weak
convergence in L? of u* := R(a*) to some . But since ||u¥ —g||3 — ||u— g||3 for such
a minimising sequence, we have so-called strict convergence of u* —gtou —g¢g. In L
this implies strong convergence of first u* — g to u — g, and then of u* to @. Suppose
also a® — é&. We then compute

J(u; &) = likrgicgf (J(u; ) + G(u; &) — G(u; )

> liminf J(u; @) + lim inf (G(u; &) — G(u; ).
k—o0

k—o0

Using the continuity of G with respect to «, we therefore obtain

J(u; &) = liminf J(u; &) > liminf J(u”; o) > J(1; &).

k—o0 k—o00
This shows that & = R(&), and hence that & solves (3.2)). O

Remark 3.1. Note that we only used € to show existence of solutions to the inner
problem. In particular, we do not require ¢ > 0 to be constant, but we can allow
¢ = ¢(a) to vary continuously with respect to a.

3.2. Derivative of the solution map

In order to use standard optimisation methods, such as BFGS, to minimise we
need to calculate a gradient of the solution map R; equivalently, following the PDE
approach of [34], we need to solve a so-called adjoint equation. A solution is given by
the classical implicit function theorem [37, Theorem 4.E], and in particular the version
in [38], Corollary 4.34] with relaxed assumptions. Let us suppose G is differentiable,
such that R(a) is given as the solution u = uq to

0=S(u,a):=K(Ku— f)+ V,G(u; ).
Then, if S is strictly differentiable, and V,,S(u, a) is invertible, we have
VR(a) = [VuS(u, @) 7' VaS(u, ). (3.4)

The strict differentiability of S may be achieved by a “second-degree” Huber
regularisation [39]. The invertibility of V.S (u, ) can be guaranteed by an additional
elliptic regularisation term §||Vu||3. Both extra regularisations are the same as already
employed in [34], where an alternative adjoint equation route was taken to avoid direct
construction of VR. We now take a closer look at the derivatives of the solution maps
for the regularisers and ([C-L’TV). Furthermore, as we are going to
restrict ourselves to the regularisation of dynamic video sequences, we consider K to
be the identity operator mapping from L?(2) to L?(f2) throughout the remainder of
this paper.
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3.8. Derivative of the IC TVTYV solution map
To use the formula (3.4), we need the derivative of the map

R(ay, a9, k) = PiR(a1, an, K)

for Py (u,w) := u, and

N 1
R(ar, az, k) := argmin 2 lu—g[l5 + an[|V(u = w)ll2.1 + a2 Vis ()21

u,w

Clearly R

VR(ay,az,k) = PIVR(a1, a2, K) (3.5)
if the latter derivative exists. ForAR(al, ag, £) to have a unique minimiser and to be
differentiable, we further replace R(aq, oz, k) with

R, (0, a9, k) = argmin J, ((u, w, a1, a2, K) (3.6)
(u,w)

for
1 ) 1 2
Jye(u,w, 01, a9, k) := 5Hu—g||2 +a1@(Vﬁ(u—w))—|—042@(V1_,.i(w))+5 wdzr | .
Q

Here we use the notation .
O(v) = [jv[l, + §||v||§ (3.7)

for the sum of the Huber-regularised 1-norm |[v|, = [, H-(||v(x)|2) dz with

and parameter v > 0, and additional Hilbert space regularisation with parameter
€ > 0. The last term of eliminates the translational invariance in R with respect
to w, thus forcing unique solutions as needed for the application of .

Note that existence of a solution (u,w) to (3.6]) is guaranteed by simple application
of Proposition and Remark provided £ ¢ {0,1}. In that case O(V,u) >
€ ||Vu||3 for some € = €'(k,€).

For the following propositions we define the shorthand notations

U, (u) := [VO(Vi(u — w)), U (u) = [V2O)(Vi(u — w))
and
Q=07
where we denote by I the identity operator. We also model by ¢ := xq the term

Jowdz = (c,w) in (3.6).

Now we can derive the derivatives of the solution map.
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Proposition 3.2 (Derivative of the IC TVTV solution map). Let ]%776 be defined by
(13.6) for some v,e >0, and

R(ay, g, k) := Pll%%e(al, ag, K).

Then .
aS - oS
R =—P 3.8
VR(an, a2, k) 1 (8(u,w)) Bor, 007’ (3.8a)
where S =V (y w)Jy,e satisfies
9s (T —a1dive¥2(u—w)Vy I
A(u, w) =Q ( I I— a2div1,,i\1/%w(w)v1,m +c® c) Q, (3.8b)
oS ok (—dive UL (u — w) 0 T1
Aoy, az, k) Q ( 0 —divi_. 01 _(w) T2) ) (3.8¢)
where
. 0 1 B2 9
T := -1 (dlv — —) V. (u—w) — ar1dive ¥y (u — w) <V - —) (w—w), and (3.8d)
ot* ot
Ty := —ag (% - div) Ul (w) — asdivi—,PI_, (w) (% - V) w. (3.8¢)

The problem of finding the derivative of the solution map thus reduces to the
problem of solving three linear systems with the operator (3.8b)) for the right-hand
side vectors the columns of (3.8¢).

Proof. The optimality conditions for the solution u = R (a1, aq,k) are obtained
from its Euler-Lagrange equation S(u,w, a1, a9, k) = 0, which we split into

Sy =u— f—oadiv,¥l(u—w) =0, and (3.92a)

Sy = a1 div, Ul (u — w) — aodivy_,Ui_, (w) + / wdr =0 (3.9b)
Q

Now (S1,52) = 0 defines (u,w) as an implicit function of (a1, as,%). By (3.4), the
Jacobian of the function R, . : (a1, a2, k) — (u,w) is given by

duw,w) [ 9S ' 9s (3.10)
(a1, g, k) B I(u, w) d(aq, ag, k) '
Calculating all the partial derivatives and using (3.5)), we obtain (3.8). O

3.4. Derivative of the IC L*TV solution map

Again we have a problem of the form

R(aq, a9, k) = PrR(a1, g, k)

for Py (u,w) := u, and

1 «
R(an, az, k) = argmin o lu — gll5 + éllvn(u —w)51 + s Vig(w)ll21. (3.11)

U, W

To employ the formula (3.4, we need to regularise R(al, ae, k) by replacing it with

R%E(al,ag,n) =argmin J, (u,w, a1, a2, K) (3.12)

U,W
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for

2
1 « 1
Tyl ,1,02,0) 1= =gl + SV a0l + x0T 1s(w) 5 ([ war)

Similar to Section [3:3] we obtain the following result.

Proposition 3.3 (Derivative of the IC L2TV solution map). Let RME be defined by
(13.12)) for some v,e >0, and

R, a9, k) := PiR, (a1, ag, k).

Then 1
a8 B a8
=P 1
VR(ou, 2, k) 1 (8(u,w)> Bor, 00 )’ (3.13a)
where S =V (y ) Jy,e salisfies
aS o * I - Oéld.iVHV,i I
6(u7w) T Q < I I — a2div1_”€‘1/%—ﬂ(w)v1—ﬂ _|_ c X C) Q (3.13b)
oS o [(—divg Vi (u —w) 0 T
dar,az. k) - 1
(o, az, k) @ ( 0 —divy_, ¥l (w) T» (3.13¢)

where

Ty = —ay (a(?* - div) Ul (w) — apdivy_ U7 (w) <§t - v) w, (3.13d)

. 0 . 0
Ty = —oy (le - 875*) Vi(u —w) — aydiv, <V = &) (u—w). (3.13e)

Here @ and c are as in Section [3.3

Proof. As in Section [3.3] we find the optimal conditions for the minimization problem

in (3.12) are
Si=u—f—adiv,Vi(u—w) =0 (3.14a)

Sy i= a1div, V. (u — w) — agdivy U], (w) + / wdr =0 (3.14b)
Q

The Jacobian of the function R, ¢ : (a1, a2, k) — u is again given by

du as \~ ' oas
————————————————e. T —P . '1
(o, a9, K) ! (3(u,w)) d(aq, g, k) (3.15)

We thus calculate the partial derivatives with respect to all the variables to obtain
(13.13)). O

4. Computational realisation

The upper level problem of the bilevel optimisation (3.1)) is solved numerically via
the BFGS algorithm with backtracking line search and curvature verification, where
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we update the quasi-Hessian only if it remains positive semi-definite. The following
Armijo condition
Fa+od)— F(a)<ocVF (a)-d (4.1)

is used, where F(a) = 1||R(c) — g||3, d is the search direction, o the step-length and

c a positive constant. The relative residual is used as a stopping criterion, so that the
algorithm terminates if
i — ctiz1ll2 < pllexil]2 (4.2)

is satisfied for a fixed, positive parameter p. As all models have to be differentiable
in order to solve the upper level problem, we used the L? norm §|| - [|3 with e = 1078
and the Huberised L' norm || - |, with v = 0.01 as our cost functionals in order to
optimise the parameters (aq, s, k) for the regularisers in Table [} We have further
used MATLAB’s inbuilt gmres function with a diagonally compensated incomplete
Cholesky preconditioner in order to solve and , respectively.

To compute numerical solutions u (and w) of the lower-level problem for fixed e,
the lower level problem of the bilevel optimisation is solved via the primal-dual
hybrid gradient method (PDHGM) as presented in [40]. In order to apply the PDHGM
to the lower level problem, we need to recast it into a saddle-point formulation. In

case of (IC-L*TV) for instance, this saddle-point formulation reads as

o .
min max = [u — g[3 + (A (%), (1)) — 5= [Pl3 — darpr(q), (4.3)
(w,w) (p,q) 2

where P = {p | ||p|l2,00 < 1} is the unit ball with respect to the supremum norm and

A is a linear operator given by
vn 7VR
(% ) »
To determine the step sizes in the PDHGM, we need to find a bound on ||A||. Assuming
k € [0,1], it is easy to show that ||A]|?> < 24. The other formulations can be cast to
saddle-point formulations in the same fashion.
In order to discretise V,, and Vi_,, we simply use forward finite differences.

Note that the parameters €, in are numerical regularisation parameters
only. As we run a relatively small number of PDHGM iterations to solve each inner
problem, the solutions will be numerically inaccurate. This therefore allows us to
ignore v and € in the inner denoising problem, and to solve the original non-smooth
problem instead. In the outer problem, we further do not restrict x € [0, 1], as this
is not strictly necessary. For reporting the results in a uniform fashion, we use the
identity

IVivlly = 126 = 1[IV e o], (4.5)

2k—1

which holds for the unsmoothed inner problems. Therefore every triple (aq, a9, k)
with x ¢ [0,1] corresponds to a triple with x € (0, 1).

5. Numerical results

For the implementation of the BFGS scheme we use the following numerical setup.
The constant ¢ in (4.1) is set to ¢ = 10~* throughout all experiments, whereas we
use p = 1078 in (4.2). In all cases the parameters a; and ay were constrained to
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lie in (107°,100), and s was constrained to lie in (—50,50). We ran BFGS with
100 different initialisations of the parameters a drawn from a 3rd order x2?-squared
distribution with mean rescaled to the values (0.15,0.15) for TVTV and (3.9,0.15)
for LTV, obtained by previous experimentation. The y2-squared distribution is used
in order to force the sampled parameters to be positive, but to not impose an upper
bound. We report the afterwards optimised parameter o for which we obtained the
best PSNR values for visual and quantitative comparison in the following figures and
tables.

In order to solve the lower level problem, the PDHGM is run with a fixed number
of iterations - 50 iterations in case the accelerated variant is applicable, otherwise
200 iterations, respectively. These were applied to the non-relaxed variants of the
regularisers, as this allows us to leave k unconstrained (see ) Each iteration uses
warm initialisation with the optimal solution from the previous iteration.

We use three different 2 + 1D video sequences for our denoising experiments: the
sequences 'hand’, 'flight’ and ’'harlem shake’. The sequence ’hand’, showing a hand
falling onto a table, is of grid-size 54 x 96 and consists of 65 frames. It contains steady
objects (like the table) and a moving object (the hand) that, at first not seen, moves
onto the table where it becomes a steady object for the rest of the scene. The camera
is fixed to a specific position. The sequence 'flight’ is filmed from a flying glider. Here
the background scenery passes by, while also the camera is at movement. The movie
has grid-size 96 x 54 and consists of 90 frames. The third sequence ’harlem shake’
is taken from https://www.youtube.com/watch?v=-_ZG2xgNAr4, The original RGB
video has grid-size 540 x 720 and consists of 711 frames. It has been converted to gray-
scale double precision, and down-sampled to grid-size 70 x 93 and 73 frames in order
to make processing in a reasonable amount of time possible. The video shows a room
inside a lodge in which the majority of people are in a rather steady position, whereas
one person is dancing (and therefore moving). Approximately half-way through the
video the scene changes, and everyone is at movement. As in case of the video "hand’,
the camera is in a fixed position.

For all videos the underlying mesh-sizes are considered to be h = 1 in each
dimension. Further, noisy versions of the video sequences have been created by
perturbing the original sequences with Gaufiian noise with mean zero and variance
0% = 0.02 respectively.

5.1. Discussion of results

We want to start discussing the results starting with the video ’hands’. Figure [Ta]
shows six frames that are selected from the original sequence at the times displayed,
and its noisy counterparts for variance o2 = 0.02. We clearly see the features described
in the previous section, starting with a relatively steady scene and a moving hand
emerging half-way through. Figure [Ta] shows the spatial and temporal components
of the TV-TV reconstruction ( with as regulariser) with optimal
parameters that are given in Table [2] as well as the sum of both components. Note
that we define the temporal component as u if k < 0.5, and u — w otherwise. We
observe that in particular for the steady parts of the scene a lot of the noise has been
removed. Most of the remaining artefacts seem to be present in the moving object,
the hand. The temporal component seems to mostly contain the moving parts of the
hand, whereas the spatial component contains a rather piecewise constant transition
from desk without to desk with hand. Figure on the other hand shows the result


https://www.youtube.com/watch?v=-_ZG2xgNAr4
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Table 2: “Hand” test video optimal results. The star * in the optimal parameter
means that the original k for the optimal result was outside the range [0,1], and the
conversion (4.5) has been used to derive the presented values.

Model | (a1,a3,k) | Opt. value | PSNR | SSIM
TVTV | (0.162, 0.0844, 0.0466)* 104.5 | 32.08 | 0.9271
L2TV | (9.85,0.0674, 0.0529)* 127.5 | 31.22 | 0.9125

Table 3: “Flight” test video optimal results. The star * in the optimal parameter
means that the original k for the optimal result was outside the range [0,1], and the
conversion (4.5) has been used to derive the presented values.

Model ‘ (a1, g, K) ‘ Opt. value ‘ PSNR ‘ SSIM
TVTV | (0.0141, 0.017, 0.337)* 46.41 36.91 | 0.9569
L2TV (4.81, 0.0163, 0.542) 46.87 32.84 0.942

of the numerical reconstruction of (3.2) with (IC-L“TV)) as a regulariser, for optimal
parameters that are also given in Table 2] The results are similar to the TV-TV case;

however, the spatial component shows a much smoother transition and therefore picks
up the hand much earlier than TV-TV does. This also explains the quality-measure
results in Table [2], as those tell us that TV-TV outperforms L,-TV for this sequence
both in terms of PSNR and SSIM.

For the next sequence, ’flight’, the situation looks quite similar in terms of
PSNR and SSIM, however, the components are very different in this case. Figure
shows six consecutive frames of the original sequence, and the same frames from
the sequence contaminated with noise. Figure shows the reconstructions with
as a regulariser. Clearly, the temporal component in this case fails to pick
up any information about the sequence, whereas all the information is stored in the
spatial component. In case of , the optimal value for k is approximately
0.5 according to Table Hence, we can hardly speak of a temporal and a spatial
component in this case, but rather of an L?- and a TV-penalised component that
are shown in Figure The first component is rather blurry, and more or less
approximating the homogeneous sky and a blurred version of the cockpit. The second
component on the other hand approximates the sharp features and structures, but not
the homogeneous background parts.

For the last sequence shown in Figure [3] Harlem shake, we figure out that both
(IC-TVTV) and (IC-L*TV)) seem to perform almost equally well, indicating a small
value of k which is confirmed by Table[d] Given the nature of the scene, the temporal
part captures most of the scene, as there are only very few pixels that remain (almost)
unchanged over time. Some of those are captured in the spatial component, like parts
of the table in the background on the left hand side for instance.

6. Conclusions & Outlook

We have presented a bilevel optimisation strategy for optimising the regularisation
parameters of infimal convolution-type regularisation methods for dynamic image
regularisation. We have shown existence of solutions under additional regularity
assumptions, and demonstrated the numerical performance of the proposed method
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Figure 1: “Hand” test video reconstructions with optimally learned parameters using
for the ICTVTV and ICL?TV regularisation models. The reconstructions are
depicted together with their temporal and spatial components. Note how L2TV picks
up the hand in the spatial component much earlier than TVTV.
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Figure 2: “Flight” test video reconstructions with optimally learned parameters using
for the ICTVTV and ICL?TV regularisation models. The reconstructions are
depicted together with their temporal and spatial components. Note how TVTV
manages to extract no temporal component, while LTV manages to extract the
spatially stable rough features in the temporal component. Recall that we define the
temporal component as v if k < 0.5, and u — w otherwise. Since k is approximately
0.5, see Table [3 it can be argued that the nomenclature “spatial” and “temporal”
components should be swapped for L?TV, and the spatial component should be the
blurry one, corresponding to the very approximate spatially constant information.
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(c) L*TV reconstruction

Figure 3: “Harlem shake” video reconstructions with optimally learned parameters
using for the ICTVTV and ICL2TV regularisation models. The reconstructions
are depicted together with their temporal and spatial components. The displayed
images have been gamma-corrected with factor v = 0.6 to improve legibility on paper.
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Table 4: “Harlem shake” test video optimal results. The star * in the optimal
parameter means that the original x for the optimal result was outside the range
[0, 1], and the conversion (4.5) has been used to derive the presented values.

Model | (a1,a3,k) | Opt. value | PSNR | SSIM
TVTV | (0.0649, 0.0122, 0.0319) 39.52 | 37.67 | 0.9621
L2TV (23, 0.0114, 0.0265) 41.02 | 37.53 | 0.9604

for three distinctive video sequences. The sequences considered allow the assumption,
that the use of the infimal convolution models for video denoising highly depends
on the corresponding video sequence. As for sequences with stationary backgrounds,
the decomposition into spatial and temporal components seems to work well, with
the optimal k being close to 0 or 1 allowing for a clear distinction of a temporal
and a spatial component. For sequences like the "flight’-sequence that lack stationary
parts, the distinction is not clear at all, which is also underpinned by the optimal &
value being close to 0.5. In this setup the modelling assumption of multiple infimal
convolutions of the same functional also breaks down, as they will be the same. A
choice of k close to 0.5 only makes sense for infimal convolutions of functionals that
promote very different information (like the L>*TV model in our case).

Future research should address different error measures for the comparison of the
denoised video sequences to the ground truth, in order to see, if different error measures
will lead to similar or different conclusions. Further can the proposed research be
easily extended to general, bounded linear operators K, which has been omitted here
for the sake of brevity. Research on infimal convolutions of different, complementary
regularisation functionals seems to be another promising direction that future research
can head for.
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