35,397 research outputs found

    Position Drift Compensation in Port-Hamiltonian Based Telemanipulation

    Get PDF
    Passivity based bilateral telemanipulation schemes are often subject to a position drift between master and slave if the communication channel is implemented using scattering variables. The magnitude of this position mismatch can be significant during interaction tasks. In this paper we propose a passivity preserving scheme for compensating the position drift arising during contact tasks in port-Hamiltonian based telemanipulation improving the kinematic perception of the remote environment felt by the human operato

    A Broadband UHF Tag Antenna For Near-Field and Far-Field RFID Communications

    Get PDF
    The paper deals with the design of passive broadband tag antenna for Ultra-High Frequency (UHF) band. The antenna is intended for both near and far fields Radio Frequency Identification (RFID) applications. The meander dipole tag antenna geometry modification is designed for frequency bandwidth increasing. The measured bandwidth of the proposed broadband Tag antenna is more than 140 MHz (820–960 MHz), which can cover the entire UHF RFID band. A comparison between chip impedance of datasheet and the measured chip impedance has been used in our simulations. The proposed progressive meandered antenna structure, with an overall size of 77 mm × 14 mm × 0.787 mm, produces strong and uniform magnetic field distribution in the near-ïŹeld zone. The antenna impedance is matched to common UHF chips in market simply by tuning its capacitive and inductive values since a perfect matching is required in the antenna design in order to enhance the near and the far field communications. Measurements confirm that the designed antenna exhibits good performance of Tag identiïŹcation for both near-ïŹeld and far-ïŹeld UHF RFID applications

    Reflectometer for receiver input impedance match measurement Patent

    Get PDF
    Reflectometer for receiver input impedance match measuremen

    Planar compact array with parasitic elements for MIMO systems

    Get PDF
    A compact planar array with parasitic elements is studied to be used in MIMO systems. Classical compact arrays suffer from high coupling which makes correlation and matching efficiency to be worse. A proper matching network improves these lacks although its bandwidth is low and may increase the antenna size. The proposed antenna makes use of parasitic elements to improve both correlation and efficiency. A specific software based on MoM has been developed to analyze radiating structures with several feed points. The array is optimized through a Genetic Algorithm to determine parasitic elements position in order to fulfill different figures of merit. The proposed design provides the required correlation and matching efficiency to have a good performance over a significant bandwidth

    Realization of a single-chip, SiGe:C-based power amplifier for multi-band WiMAX applications

    Get PDF
    A fully-integrated Multi-Band PA using 0.25 ÎŒm SiGe:C process with an output power of above 25 dBm is presented. The behaviour of the amplifier has been optimized for multi-band operation covering, 2.4 GHz, 3.6 GHz and 5.4 GHz (UWB-WiMAX) frequency bands for higher 1-dB compression point and efficiency. Multi-band operation is achieved using multi-stage topology. Parasitic components of active devices are also used as matching components, in turn decreasing the number of matching component. Measurement results of the PA provided the following performance parameters: 1-dB compression point of 20.5 dBm, gain value of 23 dB and efficiency value of %7 operation for the 2.4 GHz band; 1-dB compression point of 25.5 dBm, gain value of 31.5 dB and efficiency value of %17.5 for the 3.6 GHz band; 1-dB compression point of 22.4 dBm, gain value of 24.4 dB and efficiency value of %9.5 for the 5.4 GHz band. Measurement results show that using multi-stage topologies and implementing each parasitic as part of the matching network component has provided a wider-band operation with higher output power levels, above 25 dBm, with SiGe:C process

    A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-ÎŒm CMOS

    Get PDF
    A 24-GHz +14.5-dBm fully integrated power amplifier with on-chip 50-[ohm] input and output matching is demonstrated in 0.18-ÎŒm CMOS. The use of substrate-shielded coplanar waveguide structures for matching networks results in low passive loss and small die size. Simple circuit techniques based on stability criteria derived result in an unconditionally stable amplifier. The power amplifier achieves a power gain of 7 dB and a maximum single-ended output power of +14.5-dBm with a 3-dB bandwidth of 3.1 GHz, while drawing 100 mA from a 2.8-V supply. The chip area is 1.26 mm^2

    Immittance Matching for Multi-dimensional Open-system Photonic Crystals

    Full text link
    An electromagnetic (EM) Bloch wave propagating in a photonic crystal (PC) is characterized by the immittance (impedance and admittance) of the wave. The immittance is used to investigate transmission and reflection at a surface or an interface of the PC. In particular, the general properties of immittance are useful for clarifying the wave propagation characteristics. We give a general proof that the immittance of EM Bloch waves on a plane in infinite one- and two-dimensional (2D) PCs is real when the plane is a reflection plane of the PC and the Bloch wavevector is perpendicular to the plane. We also show that the pure-real feature of immittance on a reflection plane for an infinite three-dimensional PC is good approximation based on the numerical calculations. The analytical proof indicates that the method used for immittance matching is extremely simplified since only the real part of the immittance function is needed for analysis without numerical verification. As an application of the proof, we describe a method based on immittance matching for qualitatively evaluating the reflection at the surface of a semi-infinite 2D PC, at the interface between a semi-infinite slab waveguide (WG) and a semi-infinite 2D PC line-defect WG, and at the interface between a semi-infinite channel WG and a semi-infinite 2D PC slab line-defect WG.Comment: 8 pages, 6 figure
    • 

    corecore