103,546 research outputs found

    Capturing Hiproofs in HOL Light

    Full text link
    Hierarchical proof trees (hiproofs for short) add structure to ordinary proof trees, by allowing portions of trees to be hierarchically nested. The additional structure can be used to abstract away from details, or to label particular portions to explain their purpose. In this paper we present two complementary methods for capturing hiproofs in HOL Light, along with a tool to produce web-based visualisations. The first method uses tactic recording, by modifying tactics to record their arguments and construct a hierarchical tree; this allows a tactic proof script to be modified. The second method uses proof recording, which extends the HOL Light kernel to record hierachical proof trees alongside theorems. This method is less invasive, but requires care to manage the size of the recorded objects. We have implemented both methods, resulting in two systems: Tactician and HipCam

    On the power of quantum, one round, two prover interactive proof systems

    Full text link
    We analyze quantum two prover one round interactive proof systems, in which noninteracting provers can share unlimited entanglement. The maximum acceptance probability is characterized as a superoperator norm. We get some partial results about the superoperator norm, and in particular we analyze the "rank one" case.Comment: 12 pages, no figure

    A Vernacular for Coherent Logic

    Full text link
    We propose a simple, yet expressive proof representation from which proofs for different proof assistants can easily be generated. The representation uses only a few inference rules and is based on a frag- ment of first-order logic called coherent logic. Coherent logic has been recognized by a number of researchers as a suitable logic for many ev- eryday mathematical developments. The proposed proof representation is accompanied by a corresponding XML format and by a suite of XSL transformations for generating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in a natural language form (formatted in LATEX or in HTML). Also, our automated theorem prover for coherent logic exports proofs in the proposed XML format. All tools are publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014

    A Dual-Engine for Early Analysis of Critical Systems

    Get PDF
    This paper presents a framework for modeling, simulating, and checking properties of critical systems based on the Alloy language -- a declarative, first-order, relational logic with a built-in transitive closure operator. The paper introduces a new dual-analysis engine that is capable of providing both counterexamples and proofs. Counterexamples are found fully automatically using an SMT solver, which provides a better support for numerical expressions than the existing Alloy Analyzer. Proofs, however, cannot always be found automatically since the Alloy language is undecidable. Our engine offers an economical approach by first trying to prove properties using a fully-automatic, SMT-based analysis, and switches to an interactive theorem prover only if the first attempt fails. This paper also reports on applying our framework to Microsoft's COM standard and the mark-and-sweep garbage collection algorithm.Comment: Workshop on Dependable Software for Critical Infrastructures (DSCI), Berlin 201

    Non-Cooperative Rational Interactive Proofs

    Get PDF
    Interactive-proof games model the scenario where an honest party interacts with powerful but strategic provers, to elicit from them the correct answer to a computational question. Interactive proofs are increasingly used as a framework to design protocols for computation outsourcing. Existing interactive-proof games largely fall into two categories: either as games of cooperation such as multi-prover interactive proofs and cooperative rational proofs, where the provers work together as a team; or as games of conflict such as refereed games, where the provers directly compete with each other in a zero-sum game. Neither of these extremes truly capture the strategic nature of service providers in outsourcing applications. How to design and analyze non-cooperative interactive proofs is an important open problem. In this paper, we introduce a mechanism-design approach to define a multi-prover interactive-proof model in which the provers are rational and non-cooperative - they act to maximize their expected utility given others\u27 strategies. We define a strong notion of backwards induction as our solution concept to analyze the resulting extensive-form game with imperfect information. We fully characterize the complexity of our proof system under different utility gap guarantees. (At a high level, a utility gap of u means that the protocol is robust against provers that may not care about a utility loss of 1/u.) We show, for example, that the power of non-cooperative rational interactive proofs with a polynomial utility gap is exactly equal to the complexity class P^{NEXP}
    • …
    corecore