1,554 research outputs found

    The cavity approach for Steiner trees packing problems

    Full text link
    The Belief Propagation approximation, or cavity method, has been recently applied to several combinatorial optimization problems in its zero-temperature implementation, the max-sum algorithm. In particular, recent developments to solve the edge-disjoint paths problem and the prize-collecting Steiner tree problem on graphs have shown remarkable results for several classes of graphs and for benchmark instances. Here we propose a generalization of these techniques for two variants of the Steiner trees packing problem where multiple "interacting" trees have to be sought within a given graph. Depending on the interaction among trees we distinguish the vertex-disjoint Steiner trees problem, where trees cannot share nodes, from the edge-disjoint Steiner trees problem, where edges cannot be shared by trees but nodes can be members of multiple trees. Several practical problems of huge interest in network design can be mapped into these two variants, for instance, the physical design of Very Large Scale Integration (VLSI) chips. The formalism described here relies on two components edge-variables that allows us to formulate a massage-passing algorithm for the V-DStP and two algorithms for the E-DStP differing in the scaling of the computational time with respect to some relevant parameters. We will show that one of the two formalisms used for the edge-disjoint variant allow us to map the max-sum update equations into a weighted maximum matching problem over proper bipartite graphs. We developed a heuristic procedure based on the max-sum equations that shows excellent performance in synthetic networks (in particular outperforming standard multi-step greedy procedures by large margins) and on large benchmark instances of VLSI for which the optimal solution is known, on which the algorithm found the optimum in two cases and the gap to optimality was never larger than 4 %

    Variable neighbourhood search for the minimum labelling Steiner tree problem

    Get PDF
    We present a study on heuristic solution approaches to the minimum labelling Steiner tree problem, an NP-hard graph problem related to the minimum labelling spanning tree problem. Given an undirected labelled connected graph, the aim is to find a spanning tree covering a given subset of nodes of the graph, whose edges have the smallest number of distinct labels. Such a model may be used to represent many real world problems in telecommunications and multimodal transportation networks. Several metaheuristics are proposed and evaluated. The approaches are compared to the widely adopted Pilot Method and it is shown that the Variable Neighbourhood Search metaheuristic is the most effective approach to the problem, obtaining high quality solutions in short computational running times

    Subjectively interesting connecting trees

    Get PDF

    A Solution Merging Heuristic for the Steiner Problem in Graphs Using Tree Decompositions

    Full text link
    Fixed parameter tractable algorithms for bounded treewidth are known to exist for a wide class of graph optimization problems. While most research in this area has been focused on exact algorithms, it is hard to find decompositions of treewidth sufficiently small to make these al- gorithms fast enough for practical use. Consequently, tree decomposition based algorithms have limited applicability to large scale optimization. However, by first reducing the input graph so that a small width tree decomposition can be found, we can harness the power of tree decomposi- tion based techniques in a heuristic algorithm, usable on graphs of much larger treewidth than would be tractable to solve exactly. We propose a solution merging heuristic to the Steiner Tree Problem that applies this idea. Standard local search heuristics provide a natural way to generate subgraphs with lower treewidth than the original instance, and subse- quently we extract an improved solution by solving the instance induced by this subgraph. As such the fixed parameter tractable algorithm be- comes an efficient tool for our solution merging heuristic. For a large class of sparse benchmark instances the algorithm is able to find small width tree decompositions on the union of generated solutions. Subsequently it can often improve on the generated solutions fast
    corecore