
This manuscript is a post-print copy of the following article

Title: Subjectively Interesting Connecting Trees

Authors: Florian Adriaens; Jefrey Lijffijt; Tijl De Bie

The final publication is available at Springer via https://doi.org/10.1007/978-3-319-71246-8_4

Subjectively Interesting Connecting Trees

Florian Adriaens, Jefrey Lijffijt, and Tijl De Bie

IDLab, Dept. of Electronics and Information Systems
Ghent University — Imec

{florian.adriaens, jefrey.lijffijt, tijl.debie}@ugent.be

Abstract. Consider a large network, and a user-provided set of query
nodes between which the user wishes to explore relations. For example, a
researcher may want to connect research papers in a citation network, an
analyst may wish to connect organized crime suspects in a communica-
tion network, or an internet user may want to organize their bookmarks
given their location in the world wide web. A natural way to show how
query nodes are related is in the form of a tree in the network that con-
nects them. However, in sufficiently dense networks, most such trees will
be large or somehow trivial (e.g. involving high degree nodes) and thus
not insightful. In this paper, we define and investigate the new problem
of mining subjectively interesting trees connecting a set of query nodes
in a network, i.e., trees that are highly surprising to the specific user
at hand. Using information theoretic principles, we formalize the notion
of interestingness of such trees mathematically, taking in account any
prior beliefs the user has specified about the network. We then propose
heuristic algorithms to find the best trees efficiently, given a specified
prior belief model. Modeling the user’s prior belief state is however not
necessarily computationally tractable. Yet, we show how a highly generic
class of prior beliefs, namely about individual node degrees in combina-
tion with the density of particular sub-networks, can be dealt with in a
tractable manner. Such types of beliefs can be used to model knowledge
of a partial or total order of the network nodes, e.g. where the nodes
represent events in time (such as papers in a citation network). An em-
pirical validation of our methods on a large real network evaluates the
different heuristics and validates the interestingness of the given trees.

Keywords: Exploratory Data Mining, Subjective Interestingness, In-
formation Theory, Graphs, Graph Pattern Mining

1 Introduction

Given a graph and a set of query nodes, we are interested in connecting these
query nodes in a minimal but highly informative manner. Minimal in the sense
that we are looking for a preferably small subgraph to which the query nodes
belong to. Informative meaning that our aim is to show a user a subgraph that is
highly insightful to them, i.e., the subgraph contains relationships between nodes
that are unexpected and surprising to the user. In this paper we consider the
case of connecting the query nodes through a subgraph that has a tree structure.

Collaborative filtering
with temporal dynamics

Predictive discrete
latent factor models

for large scale dyadic data

Reducing the sampling complexity
of topic models

Amazon.com Recommendations...

Eigentaste:
A Constant Time...

Probabilistic latent semantic indexing [1999, 833 citations]

The Nested Chinese
Restaurant process and...

Fig. 1: Tree connecting the three most recent KDD best paper award winners
listed at the official ACM SIGKDD webpage1 that are also present in the Aminer
ACM-Citation-network v82. The result of our algorithm with heuristic s-IR given
no background knowledge about the graph. See Section 5 for more details.

An example: suppose we have a scientific paper citation network, where edges
denote that one paper references another. Given a set of query papers, a directed
tree containing these query papers is one possible way to represent interesting
citation relationships between these papers. The root of the tree could represent
a paper that was (perhaps indirectly) highly influential to all the papers in
the query set. Connections between nodes are subjectively interesting if they
are surprising. E.g., if a user knows certain papers are widely cited (have high
degree), those papers would be less interesting to find in the connecting tree: the
user already expects this connection to exist and hence does not learn much.

An example of an informative tree connecting three recent KDD best paper
award winners where no prior knowledge about degrees was assumed is given in
Figure 1. Another example application would be to organize your bookmarks by
constructing a tree where the bookmarks are the query nodes and the network is
the WWW. With a prior containing the degrees of the nodes in the network, an
informative tree would partition the bookmarks according to links that are sur-
prising and hence specific to a sub-network (they have low degree). Our method
find such trees without doing community detection as an intermediate step.

The main question here is: what makes a certain tree interesting to a given
user? We believe that the goal of Exploratory Data Mining (EDM) is to increase
a user’s understanding of his or her data in an efficient way. However, we have
to consider that every user is different. It is in this regard that the notion of
subjective interestingness was formalised [9] and more particularly the creation
of the data mining framework FORSIED that we build upon [4, 5].

The FORSIED framework specifies in general terms how to model prior be-
liefs the user has about the data. Given a background model representing these
prior beliefs, we may find patterns that are highly surprising to the particular
user. Hence in our setting, a tree will generally be more interesting if it contains,
according to the user’s beliefs, more unexpected relationships between the nodes.

1 http://www.kdd.org/awards/sigkdd-best-research-paper-awards
2 https://aminer.org/citation, [10]

This paper contributes the following:
– We define the new problem of finding subjectively interesting trees connect-

ing a set of query nodes in a network. (Section 2)
– We show how to formalize a user’s knowledge that the graph has a ‘DAG’-like

structure, for example because the nodes represent events in time. (Section 3)
– We propose heuristics for mining the most interesting trees efficiently in the

case of directed graphs. (Section 4)
– We evaluate and compare the effectiveness of these heuristics on real data

and study the utility of the resulting trees, showing that the results are truly
and usefully dependent on the assumed prior beliefs of the user. (Section 5)

2 Subjectively interesting trees in graphs

We denote a network (aka graph) G as G = (V,E), where V is the set of nodes
(aka vertices) and E ⊆ V × V is the edge set. We denote the adjacency matrix
of a graph as A, where Aij = 1 iff there is an edge connecting node i to j,
i.e., iff (i, j) ∈ E. The main focus of this paper will be on directed networks.
However, our methods directly apply to undirected networks, when considered
as a special case where A is symmetric. We assume that the set of nodes V is
fixed and known, and the user is interested the network’s connectivity, i.e., the
edge set E, especially in relation to a set of so-called query nodes Q ⊆ V .

2.1 Trees connecting query nodes as data mining patterns

The data mining process we consider is query-driven: the user provides a set
of query nodes Q ⊆ V between which they suspect connections exist in the
graph that might be of interest to them. In response to this query, the methods
proposed in this paper will thus provide the user with a tree-structured sub-
network connecting the query nodes. We consider trees because they are easy to
interpret. We refer to the presence of a tree as a pattern found in the network.

Formally, a tree T = (VT , ET) is a network over the nodes VT ⊆ V with edges
ET = {e1, . . . , e|VT |−1} ⊆ VT × VT , where ei(2) 6= ej(2) for i 6= j (i.e., each node
has only one parent). The tree T = (VT , ET) is said to be present in the network
G = (V,E) iff VT ⊆ V and ET ⊆ E. The methods proposed below search for
interesting trees T = (VT , ET) present in the network G = (V,E) with Q ⊆ VT .

Remark 1 The above description is a special type of tree: a rooted arbores-
cence. This is a tree-structured directed sub-network with a unique directed path
between the root and each of the leaves. The edges all point away from the root
(out-arborescence), but by reversing all edge directions also in-arborescences can
be considered. We will simply refer to the considered patterns as trees.

2.2 Subjective interestingness

The FORSIED framework aims to quantify interestingness of a pattern in a
subjective manner, dependent on prior beliefs the user holds about the data. To

model the user’s belief state about the data, the framework proposes to use a
so-called background distribution, which is a probability distribution P over the
data space (in our setting, the set of all possible edge sets E). It was argued
that a good choice for the background distribution is the maximum entropy
distribution subject to the prior beliefs as constraints [4, 5].

The FORSIED framework then prefers patterns that achieve a trade-off be-
tween how much information the pattern conveys to the user (considering their
belief state), versus the effort required of the user to assimilate the pattern.
Specifically, De Bie [4] argued that the Subjective Interestingness (SI) of a pat-
tern can be quantified as the ratio of the Information Content (IC) and the
Description Length (DL) of a pattern. The IC is defined as the negative log prob-
ability of the pattern w.r.t. the background distribution P . The DL is quantified
as the length of the code needed to communicate the pattern to the user.

The IC of a tree. The background distributions P for all prior belief types
discussed in this paper have the property that P factorizes as a product of
independent Bernoulli distributions3, one for each possible edge e ∈ V × V .
Hence the IC of a tree T with edges ET decomposes as

IC(T) = −log(
∏

e∈ET

Pr(e)) =
∑
e∈ET

IC(e), (1)

where we defined the IC of an edge e to be IC(e) = −log(Pr(e)).
The DL of a tree. A tree can be described by first describing the set

of nodes VT and then the set of edges ET over this set of nodes. To describe
the set VT ⊆ V efficiently, note that Q ⊆ VT such that only VT \ Q needs to
be described. This can be done using a sequence of |VT | − |Q|+ 1 symbols from
V \Q∪{‘stop’}, where the last one is a stop symbol. This results in a description
length of (|VT | − |Q| + 1) log(|V | − |Q| + 1) bits for VT . Given VT , ET can be
described by listing the parents of all nodes from within VT ∪{‘none’}, where the
‘none’ symbol is used for the root. This requires |VT | log(|VT |+ 1) bits. Thus:

DL(T) = (|VT | − |Q|+ 1) log(|V | − |Q|+ 1) + |VT | log(|VT |+ 1). (2)

2.3 Finding subjectively interesting trees

The methods presented in this paper aim to solve the following problem:

Problem 1 Given a graph G = (V,E) and set of query nodes Q ⊆ V , we
want to find a root r ∈ V and an out-arborescence rooted at r, such that the
arborescence is maximally subjectively interesting. We additionally require that
all leaf nodes are query nodes, and we constrain the height of the tree not to be
larger than a user-defined parameter k.

Since the SI depends on the background distribution and thus on the user’s
prior beliefs, the optimal solution to Problem 1 does as well. As stated in Re-
mark 1, by transposing the adjecency matrix A, we can equivalently consider
in-arborescences in exactly the same manner.

3 This just happens to be true for the studied prior beliefs. This may indeed reduce
computational complexity and it surely reduces the complexity of exposition.

3 The background distribution to model the user beliefs

As mentioned, the background distribution is computed as the maximum entropy
distribution subject to the prior beliefs as constraints. Here we discuss how this is
done in detail for three types of prior beliefs: (1) on the overall edge density; (2)
on the individual node degrees; and () for networks with nodes that correspond to
timed events, on the tendency of nodes to be connected to nodes at a specified
time difference (as well as generalization thereof). These prior beliefs can be
combined as well. Note that (1) and (2) were introduced before in [6].

3.1 Prior beliefs on overall density, and on individual node degrees

As shown in [6], given prior beliefs on the degrees of the nodes, the maximum
entropy distribution factorizes as:

P (A) =
∏
i,j

exp((λri + λcj)Aij)

1 + exp(λri + λcj)
,

where λri and λcj are parameters from the resulting optimization problem. [3]
showed how these can be computed efficiently. For a prior belief on the overall
graph density, every edge probability in the model equals the assumed density.

3.2 Prior beliefs when nodes represent timed events

If the nodes in G correspond to events in time, we can partition the nodes into
bins according to a time-based criterion. For example, if the nodes are scientific
papers in a citation network, we can partition them by publication year. Given
these bins, it is possible to express prior beliefs on the number of edges between
two bins. This would allow one to express e.g. beliefs on how often papers from
year x cite papers from year y. This is useful e.g. if one believes that papers cite
recent papers more often than older ones.

We consider the case when our beliefs are in line with a stationarity property,
i.e. when the beliefs regarding two bins are independent of the absolute value of
the time-based criterion of these two bins, but rather only depend on the time
difference. Given an adjacency matrix A, this amounts to expressing prior beliefs
on the total number of ones in each of the block-diagonals of the resulting block
matrix (formed by partitioning the elements into bins), see Fig. 2 for clarification.

We consider the problem of finding the maximum entropy distribution over
the set of rectangular binary matrices A = {0, 1}n×n, while constraining the
expectation of the sum of the elements in each of the block diagonals, as well
each of the row and column sums. It is found by solving:

b3

b2

b1

b1 b2 b3

Fig. 2: A resulting block matrix with 3 bins b1, b2 and b3. There are 5 block-
diagonals Dk (indicated by the same fill). For each Dk, we express prior beliefs
on the sum of all elements in Dk.

arg max
P (A)

−
∑
A∈A

P (A) logP (A),

s.t.
∑
A∈A

P (A)

n∑
j=1

Aij = dri ,
∑
A∈A

P (A)

n∑
i=1

Aij = dcj ,∑
A∈A

P (A)
∑

(i,j)∈Dk

Aij = Bk,

∑
A∈A

P (A) = 1,

with i, j ∈ {1, . . . , n} and k ∈ {1, . . . , 2#bins−1}, and with dri the expected sum
of the i’th row, dcj the expected sum of the j’th column, and Bk the expected
sum of the k’th block diagonal Dk. The resulting maximum entropy distribu-
tion factorizes as a product of independent Bernoulli distributions, one for each
random variable Aij ∈ {0, 1}:

P (A) =
∏
i,j

exp((λri + λcj + αk)Aij)

1 + exp(λri + λcj + αk)
, (3)

where λri , λ
c
j and αk are the Lagrange multipliers for the corresponding row,

column and block-diagonal constraints. These Lagrange multipliers are found by
minimizing the Lagrange dual function, as given by:

L(λr, λc, α) =
∑
i,j

log(1 + exp(λri + λcj + αk))−
∑
i

λri d
r
i −

∑
j

λcjd
c
j −

∑
k

αkBk.

Standard methods for unconstrained convex optimization such as Newton’s
method can be used to infer the optimal values. The number of variables to be
optimized over is equal to 2(n+#bins)−1, where 1 ≤ #bins ≤ n. Using Newton’s

method then requires solving a linear system of O(n) equations, with computa-
tional complexity O(n3). For practical problems involving large networks, this
quickly becomes infeasable. However, with a similar argument as in [3], we can
dramatically reduce the number of variables. Observe that if drk = drl and k and
l belong to the same bin, then we have L(. . . , λrk, λ

r
l , . . .) = L(. . . , λrl , λ

r
k, . . .).

The convexity of L implies λrk = λrl at the optimum. A similar argument holds
for the λc parameters. Thus the number of free variables per bin to be optimized
over, is bounded by the number of distinct row and column sums per bin.

Let m̃ be the total number of free row variables, and ñ be the total number of
free column variables. The following Lemma provides an upper bound on m̃+ ñ
in terms of the number of non-zero elements of A and the number of bins k:

Lemma 1 Let A be a binary rectangular matrix and denote s =
∑

i,j A. Then

it holds that m̃+ ñ ≤ 2
√

2ks.

Proof. Let m̃i be the number of distinct row variables in the i-th bin and simi-
larly for ñi with i ∈ {1, . . . , k}. Let si (s′i) be the total number of ones in all the
rows (columns) of the elements in bin i. Then the following inequalities hold [3]:

m̃i ≤
√

2si, and ñi ≤
√

2s′i.

Hence m̃+ ñ ≤
√

2(
√
s1 + . . .+

√
s′k). Clearly also

∑
i si + s′i = 2s and thus by

Jensen’s inequality
√
s1 + . . .+

√
s′k ≤ 2

√
ks, which proves the lemma. ut

Denote λ̃rk,l as the l-th unique row parameter in the k-th bin. Denote the

corresponding row sum constraint as d̃rk,l having m̃k
l occurences in that bin.

Similarly for λ̃ck,l, d̃
c
k,l and ñkl . Denote αkk′ as the α parameter of the Aij elements

with i ∈ bin k and j ∈ bin k’. The reduced Lagrange dual function then becomes

L(λ̃r, λ̃c, α) =
∑
k

∑
k′

∑
l

∑
l′

m̃k
l ñ

k′

l′ log(1 + exp(λ̃rk,l + λ̃ck′,l′ + αkk′))

−
∑
k

∑
l

m̃k
l d̃

r
k,lλ̃

r
k,l −

∑
k′

∑
l′

ñk
′

l′ d̃
c
k′,l′ λ̃

c
k′,l′ −

∑
m

αmBm.

The gradient is computed as

∂L

∂λ̃rk,l
=

∑
k′

∑
l′

m̃k
l ñ

k′

l′
exp(λ̃rk,l + λ̃ck′,l′ + αkk′)

1 + exp(λ̃rk,l + λ̃ck′,l′ + αkk′)
− m̃k

l d̃
r
k,l, (4)

∂L

∂λ̃ck′,l′

=
∑
k

∑
l

m̃k
l ñ

k′

l′
exp(λ̃rk,l + λ̃ck′,l′ + αkk′)

1 + exp(λ̃rk,l + λ̃ck′,l′ + αkk′)
− ñk

′

l′ d̃
c
k′,l′ , (5)

∂L

∂αk
=

∑
Dk

exp(λ̃rk,l + λ̃ck′,l′ + αk)

1 + exp(λ̃rk,l + λ̃ck′,l′ + αk)
−Bk. (6)

and a similar expression for the Hessian. In all cases (rows, columns and block di-
agonal) the corresponding gradient is simply the difference between the expected

number of ones and the corresponding parameter as given by the constraints.
When applying Newton’s method to the reduced model, we need O(m̃ñ) calcu-
lations to compute both the gradient and Hessian. After that we need to solve a
linear system with m̃+ ñ+ 2k− 1 equations, with cubic complexity. By Lemma
1, this is O(

√
k3s3 + k3), making it very efficient in many real life applications

(sparse networks and a small number of bins).

Remark 2 Note that we are not limited to the case of stationarity, nor is it
necessary that nodes correspond to timed events. Expressing prior beliefs on the
density of any particular subset of edges is possible in a similar manner. We
tackled this specific case because it directly applies to the data used in this paper.

4 Algorithms for finding the most interesting tree

The problem of finding a directed Steiner arborescence (spanning all the query
nodes) with maximum SI is NP-hard in general, as can be seen from the case of
constant edge weights (e.g., if the prior belief is the overall graph density). In
this case the SI of a tree will be a decreasing function of the number of nodes
in the tree. Hence the problem is equivalent to the minimum Steiner arbores-
cence problem, with constant edge weights, which is NP-hard. For nonconstant
background models it will be a trade-off between the IC and the DL of a tree.
In most cases, we are looking for small trees with highly informative edges.

There are a number of algorithms that provide good approximation bounds
for the directed Steiner problem [2, 7, 11], and this problem has also been studied
recently in the data mining community, e.g., [1, 8]. However, Problem 1 is equiv-
alent to the Steiner problem in the case of a uniform background distribution,
i.e., when the IC of the edges is constant and hence irrelevant. In general, we aim
to solve a maximization problem, while Steiner tree problems aim to minimize
the cost of the tree. For this reason we propose fast heuristics for large graphs,
that perform well on different kinds of background distributions.

A Python implementation of the algorithms and the experiments is available
at http://www.interesting-patterns.net/forsied/sict/.

4.1 Proposed heuristics

Our proposed methods all work in a similar way. We apply a preprocessing step,
resulting in a set of candidate roots. Given a candidate root r, we build the tree
by iteratively adding edges (parents) to the frontier—initialized as Q \ {r}—,
until frontier is empty. We exhaustively search over all candidate roots and select
the best resulting tree. The heuristics differ in the way they select allowable
edges. The outline of SteinerBestEdge is given in Algorithm 1.

Preprocessing. All of the proposed heuristics have two common prepro-
cessing steps. First we find the common roots of the nodes in Q up to a certain
level k, meaning we look for nodes r, s.t. ∀q ∈ Q : SPL(q, r) ≤ k, with SPL(·) de-
noting the shortest path length. This can be done using a BFS expansion on the

nodes in Q until the threshold level k is reached. Note that query nodes are also
potential candidates for being the root, if they satisfy the above requirement.

Secondly, for each r we create a subgraph H ⊂ G, consisting of all simple
paths q r with SPL(q, r) ≤ k, for all q ∈ Q. This can be done using a
modified DFS-search. The number of simple paths can be large. However, we
can prune the search space by only visiting nodes that we encountered in the
BFS expansion, making the construction of H quite efficient for small k.

SteinerBestEdge. Given the subgraph H, we construct the arborescence
working from the query nodes up to the root. We initialize the frontier as Q\{r},
and iteratively add the best feasible edge to a partial solution, denoted as Steiner,
according to a greedy criterion. The greedy criterion is based on the ratio of the
IC of that edge to the DL4 of the partial Steiner that would result from adding
that edge. This heuristic prefers to pick edges from a parent node that is already
in Steiner, yielding a more compressed tree and thus a smaller DL.

Algorithm 2 checks if an edge is feasible by propagating its potential influence
to all the other nodes in H. The check can fail in two ways. First, the addition of
an edge could yield a Steiner tree with height > k, see Figure 3 for an example.
Secondly, the addition of an edge may lead to cycles in Steiner. Cycles are
avoided by only considering edges (s, t) that do not potentially change SPL(t, r).
If SPL(t, r) would change, the shortest path –given the current Steiner– from
s to r is not along the edge (s, t) and hence for all f ∈ frontier we always
have 1 feasible edge to pick (i.e. an edge that is part of a shortest path f r).
One way to select the best feasible edge is to first sort the edges according to
the greedy criterion. Then try the check from Algorithm 2 on this sorted list
(starting with the best edge(s)), until the first succes, and add the resulting
edge to Steiner. Algorithm 2 will also return an updated shortest path function
NewSP, containing all the changes in SPL(n, r) for n ∈ H due to the addition of
that edge to Steiner. After performing the necessary updates on the SP function,
and the frontier, parents and level sets, we continue to iterate until frontier is
empty.

SteinerBestIC. Instead of adding 1 edge at a time, this heuristic adds
multiple edges at once. We look for the parent node that (potentially) adds
the most total information content of allowable edges to the current Steiner.
However, given such a parent node, it not always possible to add multiple edges,
see Figure 4. Instead we sort the edges coming from such a parent node according
to their IC, and iteratively try to add the next best edge to Steiner.

SteinerBestIR. A natural extension of SteinerBestIC is to actually take in
account the DL of the partial Steiner solution, as we did in SteinerBestEdge.
SteinerBestIR favors parent nodes that are already in Steiner, steering towards
an even more compressed tree.

SteinerBestEdgeBestIR. Our last method simply picks the single best
edge coming from the best parent, where the best parent is determined by the

4 Note that during construction, the partial solution Steiner is often a forest. However,
we compute the DL as if it was an equally sized tree. This makes sense because the
end result will in fact be a tree, and we are optimizing towards the IR of that tree.

Algorithm 1 SteinerBestEdge(subgraph H, root r, queryset Q, maxlevel k)

1: Steiner ← Q ∪ {r}
2: ∀x ∈ H : SP (x)← ShortestPathLength(r, x)
3: frontier ← Q.remove(r)
4: level(frontier)← 0
5: parents← parents(frontier)
6: while frontier do
7: n← length(Steiner), ranking ← ∅
8: for all edges from parents to frontier do
9: if parent ∈ Steiner then

10: ranking.add({edge, IC(edge)/DLTree(n)})
11: else
12: ranking.add({edge, IC(edge)/DLTree(n + 1)})
13: ranking ← sort(ranking)
14: for edge ∈ ranking do
15: if CheckChildren(H, edge, Steiner, k, SP) is True then
16: update(Steiner, frontier, parents, level, SP)
17: Quit loop

18: return Steiner

same criteria as in SteinerBestIR. In general this will pick a locally less optimal
edge than SteinerBestEdge, but it will pick edges from a parent node that has
lots of potential to the current Steiner solution.

Correctness of the solutions. The following theorem states that all the
heuristics indeed result in a tree with maximal height ≤ k.

Theorem 1 Given a non-empty query set Q, a candidate root r and a height
k ≥ 1. In all cases all four heuristics will return a tree with height ≤ k.

Proof. In all cases the proposed heuristics return a tree rooted at r with height
≤ k. We call a partial forest solution Steiner valid, if for all leaf nodes l ∈
Steiner : SPL(l, r|Steiner) ≤ k, where SPL(·|Steiner) denotes a shortest path
length given the partial Steiner solution. Note that the initial Steiner is valid,
due to the way the subgraph H was constructed. It is always possible to go from
one valid Steiner solution to another valid one, by selecting an edge (incident to a
frontier node) along a shortest path—given we have Steiner—from r that frontier
node. This will result in an unchanged SPL for all other nodes (in particular the
leaf nodes), and hence remains a valid Steiner. If we have n frontier nodes, we
have at least n such valid edges to pick from. Hence, all of the heuristics have at
least n ≥ 1 valid edges to pick from. The process of adding edges is finite, and
will eventually result in an arborescence rooted at r with height ≤ k.

5 Experiments

In this section we empirically evaluate our proposed methods on real data. All
experiments are based on the ACM-Citation-network v81, a scientific paper cita-

Algorithm 2 CheckChildren(H, edge, Steiner, k, SP)

1: frontier ← frontier(Steiner), level← level(Steiner), (source, target)← edge
2: NewSP ← {source : SP (target) + 1}
3: if NewSP (source) = SP (target) then return True
4: else if NewSP (source) + level(source) > k then return False
5: else
6: children← children(source)

7: while children do
8: nextChildren← ∅
9: for c ∈ children do

10: if c 6∈ Steiner \ frontier then
11: updatedP = parents(c) ∩NewSP
12: otherP = parents(c) \ updatedP
13: cand← min(NewSP (p) : p ∈ updatedP) + min(SP (p) : p ∈ otherP) + 1
14: if cand > SP (c) then
15: NewSP (c) = cand
16: if c ∈ query and NewSP (c) > k then return False

17: if c is target then return False . Possible cycle avoided

18: nextChildren.add(children(c))

19: else
20: NewSP (c) = NewSP (SteinerParent(c)) + 1
21: if c is target then return False . Possible cycle avoided

22: nextChildren.add(children(c))

23: children← nextChildren
24: return True, NewSP

Q1 Q2

R

X

Fig. 3: Example of why look-ahead is
needed to ensure the returned tree has
depth as most k. If k = 2, the only
valid tree is (Q1, R)(Q2, Q1). Initially,
the frontier is {Q1, Q2} and X is a
candidate parent for Q1 because there
is a path Q R of at most length 2.
Yet, adding the dashed edge violates
the shortest path constraint for Q2.

A

Q1

B

Q2 Q3

R

Fig. 4: Example of why look-ahead is
needed for sets of edges. For k = 3,
neither of the two dashed edges violate
the depth constraint—they are part of
a valid tree—, but together they in-
directly violate the shortest path con-
straint for Q1. Regardless of which
parent is chosen for A, the path from
Q1 to R has length 4.

Avg. s-IC s-IR s-Es-EIR

Querysize = 3

0.5

0.6

0.7

0.8

0.9

1

A
lg

o
(S

I)
/O

P
T

(S
I)

Avg. s-IC s-IR s-E s-EIR

Querysize = 5

0.5

0.6

0.7

0.8

0.9

1

Avg. s-IC s-IR s-E s-EIR

Querysize = 7

0.5

0.6

0.7

0.8

0.9

1

Fig. 5: The interestingness of the heuristics (relative to the optimal interesting-
ness) versus querysize. We also compare with the average interestingness over
all trees. Note the decrease in performance of s-E for larger querysizes.

tion network. This (directed) network contains 2,381,688 papers and 10,476,564
citations. The oldest paper is a seminal paper of C.E. Shannon from 1938. The
most recent papers are from 2016. We will use the acronyms s-E, s-IC, s-IR and
s-EIR for resp. SteinerBestEdge, SteinerBestIC, SteinerBestIR and SteinerBest-
EdgeBestIR. First, we evaluate and compare the performance of the heuristics.

5.1 Comparing the heuristics

To compare the performance of the heuristics we set up an experiment similar
to [1]. We fitted the background model with prior beliefs on the degrees of the
network. To generate a set of n query nodes we used a snowball-like sampling
scheme. We randomly selected an initial node in the graph. Then, we explore
n′ < n of its neighbors, each selected with probability s. For each of these
nodes we continue to test n′ of its neighbors until we have n selected nodes.
From this query set we randomly select a valid common root within a maximum
distance k. To have a baseline, we find the arborescence with maximal SI using
exhaustive search. To keep this comparison feasible, we only consider cases where
the number of trees is < 200, 000. For querysizes = {3, 5} we generated 1000
query sets, for querysize = 7 we have done 250 sets. In all cases k was limited to
3, the beamwidth n′ was chosen to be 2 and sampling rates s ∈ {0.1, . . . , 0.9}.

Figure 5 shows a boxplot of the interestingness scores of the tree-building
heuristics (relative scores to the optimal arborescence interestingness) versus
query size. All four heuristics clearly are better strategies than randomly select-
ing an arborescence (the Avg. case). s-IR outperforms s-IC in all cases, which
makes sense because s-IC has no regard for the DL of the tree. s-E performs
comparatively worse for larger query sizes, and s-IR seems to be the best option
for larger querysizes. This result is not definite, it could be due to the fact that

Querysize = 3 Querysize = 5 Querysize = 7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

A
v
e

ra
g

e
 r

u
n

 t
im

e
 (

s
)

s-IC

s-IR

s-E

s-EIR

Fig. 6: Average run time of the heuristics. The main bottleneck is finding all the
simple paths, which is included here. Hence, the run time differences are small.

we fixed the height at k = 3. However, while not reported here, we observed that
s-IR is also the best option for larger query sizes and larger k. We also tested
the effect of the sampling rate (not shown), and this appeared to affect neither
the SI of the resulting trees, nor the ranking of the algorithms.

Figure 6 shows the average run time of our methods. The run time of the
heuristics are all negligable compared to the time needed to find all simple paths
from the root to the query nodes (see Section 4), which in all cases takes up
more than 90% of the total running time. We conclude that with prior beliefs
on the individual node degrees, s-IR seems to be best option for larger queries,
while for smaller queries s-E seems to give a more interesting tree.

5.2 The effect of different prior beliefs, and a subjective evaluation

Here we evaluate the outcome of our heuristics w.r.t. three different kinds of
prior beliefs on the ACM citation network. The first prior belief is on the overall
graph density. In this case, every edge has the same probability in the background
model and hence same information content. The optimal arborescence then is the
smallest Steiner arborescence. The second set of prior beliefs is on the individual
degree of each node. As for a citation network the number of citations a paper
has is easier to estimate than the number of references of that paper (without
reading it), we only constrained the expected in-degree of each node. As a result,
edges to highly cited nodes are more probable, and a tree will be more interesting
if it is not only small, but has a preference for less frequently cited papers. The
final type of prior belief is on both the individual in-degree of each node, as well
as the dependency of citation probabilities on the difference in publication date.

In Section 3.2 we showed how to formalize prior beliefs on diagonal block
sums. Here it is natural to group papers together according to their publication
year (or per 2 years, 5 years, . . .). In this way, it is possible to incorporate prior
beliefs such as: “The number of papers from yearX citing a paper from yearX−3
is high”. In general, an edge will have a high probability if the corresponding

Table 1: Average number of common authors per edge in the tree from algorithm
s-IR for different types of prior beliefs and query sizes. p-values for the Wilcoxon
signed-rank test (pairwise comparison) of each type of prior with the prior on
individual degrees, shown between brackets. The second column lists the time
to fit the background model on the full data.

Prior beliefs Time(s)
No. of authors,
|Q| = 5

No. of authors,
|Q| = 7

No. of authors,
|Q| = 9

Overall density - 2.71 (0.0035) 2.94 (0.005) 3.66 (0.0044)
Indiv. degrees 22 3.17 3.34 4.09
Bin every 3 years 380 2.92 (0.007) 3.12 (0.0417) 3.9 (0.0996)
Bin every 5 years 254 2.80 (5.63e-04) 2.84 (9.05e-06) 3.71 (0.0049)

expected block diagonal sum is high, see Eqs. (3) and (6). Note that the citation
network should (in theory) be a directed acyclic graph, since no paper can cite
a paper with a higher publication year. Yet the data contains 66,772 (< 0.01%)
violating edges, which our method handles gracefully.

Common authors as external validation. In many scientific fields, self-
citations are common practice. We expect the trees to reflect this to differing
degrees, depending on the prior beliefs taken into account. To test this, we set
up an experiment similar as in Sec. 5.1. The queries are generated in the same
way, but with a preference for queries that have some authors in common. If a
paper has an author in common with the current query set, it is automatically
chosen instead of being sampled with probability s. We generated 200 random
queries for each querysize {5, 7, 9}, with max. height k = 4. For each query, we
look at the tree generated by s-IR, computed for 4 different types of prior beliefs.
Our measure is the total number of common authors per edge in the tree.

Table 1 shows the results for 4 types of prior beliefs. There is a substantial
difference between the first and second prior. This makes sense because with
a constant background model, s-IR is indifferent to the number of citations of
papers. With the second prior, s-IR prefers nodes with fewer citations, penal-
izing highly cited papers. This means we are also favoring self-citations a bit
more, since chances are high that nodes encountered in our experiment do not
have authors in common for references to seminal papers. Secondly, there are
differences in the self-citation rate between a prior on the time relations (priors
3 and 4) versus prior 2. Most people stop publishing after their PhD, but dur-
ing that time they will have some references to their own papers. Hence with
a background model of type 3 and 4, s-IR will prefer citations between papers
with a high difference in publication year, making self-citations less common.

Subjective evaluation. We queried three recent KDD best paper award
winners that were present in the network, see Figs. 1, 7, 8 for results for different
prior beliefs. We used k = 3, resulting in 33 candidate roots. Notice the number
of citations and the publication year of the root in each of the resulting trees,
confirming our expectations of the influence of the prior beliefs on the SI of trees.

Collaborative filtering
with temporal dynamics

Predictive discrete
latent factor models

for large scale dyadic data

Reducing the sampling complexity
of topic models

Restricted Boltzmann machines for...

Probabilistic latent
semantic analysis

Learning from dyadic data [1999, 35 citations]

Topic models with power-law...

Probabilistic latent
semantic indexing

Fig. 7: Like Figure 1, with as prior knowledge the degree of each node.

Collaborative filtering
with temporal dynamics

Predictive discrete
latent factor models

for large scale dyadic data

Reducing the sampling complexity
of topic models

Restricted Boltzmann machines for...

Probabilistic latent
semantic analysis

A deterministic annealing approach
to clustering [1990, 42 citations]

Topic models with power-law...

Probabilistic latent
semantic indexing

Fig. 8: Like Figure 1, with as prior knowledge degrees and time constraints.

6 Discussion and related work

We studied the problem of finding interesting trees that connect a user-provided
set of query nodes in a large network. This is useful for example to, based on cita-
tion data, find papers that (indirectly) influenced a set of query papers, perhaps
to understand the structure of an organization from communication records, and
in many other settings. We defined the problem of finding such trees as an opti-
mization problem to find an optimal balance between the informativeness (the
Information Content) and conciseness (the Description Length) of a tree. Addi-
tionally, by encoding the prior beliefs of a user, we propose how to find results
that are surprising and interesting to a specific user.

We have introduced a general algorithmic strategy to construct such trees
along with four heuristics of varying complexity. We have introduced a tractable
model to include prior knowledge about the density of sub-networks and more
specifically for the case where the nodes appear in time blocks and the proba-
bility of edges is expected to be a function of time. Finally, we evaluated the
interestingness of the results in several experiments, both subjectively and using
external criteria, plus we empirically compared the quality and computational
efficiency of the four heuristics.

The computational problem solved in this paper is related to the problem of
constructing a minimal Steiner arborescence (aka directed Steiner tree). There
is a long development of approximation algorithms, e.g., [2, 7, 11]. Faster special-

purpose approximations have also been studied in the data mining community,
e.g., for temporal networks [8]. The most related algorithmic results are those
of Akoglu et al. [1], who study the problem of finding a good partitioning and
connection structure within each part on undirected graphs for a given set of
query nodes. Although their purpose is to explore an undirected graph, they
map the problem to graph partitioning plus finding Steiner arborescences.

It should be noted that Problem 1 is not equivalent to the Steiner arbores-
cence problem, because in general the subjective interestingness of a tree does
not factorize as a sum over the edges. Hence, we do not expect any existing
algorithm to solve this problem well.

We are currently working on applications in biology as well as social media.
Acknowledgements. This work has been supported by the European Research
Council under the EU’s Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreement no. 615517, the FWO (project no. G091017N, G0F9816N), and
the European Union’s Horizon 2020 research and innovation programme and the
FWO under the Marie Sklodowska-Curie Grant Agreement no. 665501.

References

1. Akoglu, L., Chau, D.H., Faloutsos, C., Tatti, N., Tong, H., Vreeken, J.: Mining
connection pathways for marked nodes in large graphs. In: Proc. of SDM. pp.
37–45 (2013)

2. Charikar, M., Chekuri, C., Cheung, T.Y., Dai, Z., Goel, A., Guha, S., Li, M.:
Approximation algorithms for directed steiner problems. In: Proc. of SODA. pp.
192–200 (1998)

3. De Bie, T.: Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. Data Mining and Knowledge Discovery 23(3), 407–446
(2011)

4. De Bie, T.: An information theoretic framework for data mining. In: Proc. of KDD.
pp. 564–572 (2011)

5. De Bie, T.: Subjective interestingness in exploratory data mining. In: Proc. of IDA.
pp. 19–31 (2013)

6. van Leeuwen, M., De Bie, T., Spyropoulou, E., Mesnage, C.: Subjective interest-
ingness of subgraph patterns. Machine Learning 105(1), 41–75 (2016)

7. Melkonian, V.: New primal-dual algorithms for steiner tree problems. Computers
& Operations Resesearch 34(7), 2147–2167 (2007)

8. Rozenshtein, P., Gionis, A., Prakash, B.A., Vreeken, J.: Reconstructing an epidemic
over time. In: Proc. of KDD. pp. 1835–1844 (2016)

9. Silberschatz, A., Tuzhilin, A.: On subjective measures of interestingness in knowl-
edge discovery. In: Proc. of KDD. pp. 275–281 (1996)

10. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: Extraction and
mining of academic social networks. In: Proc. of KDD. pp. 990–998 (2008)

11. Watel, D., Weisser, M.A.: A practical greedy approximation for the directed steiner
tree problem. In: Proc. of COCOA. pp. 200–215 (2014)

