553 research outputs found

    An Investigation Report on Auction Mechanism Design

    Full text link
    Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field

    Game Theory Meets Network Security: A Tutorial at ACM CCS

    Full text link
    The increasingly pervasive connectivity of today's information systems brings up new challenges to security. Traditional security has accomplished a long way toward protecting well-defined goals such as confidentiality, integrity, availability, and authenticity. However, with the growing sophistication of the attacks and the complexity of the system, the protection using traditional methods could be cost-prohibitive. A new perspective and a new theoretical foundation are needed to understand security from a strategic and decision-making perspective. Game theory provides a natural framework to capture the adversarial and defensive interactions between an attacker and a defender. It provides a quantitative assessment of security, prediction of security outcomes, and a mechanism design tool that can enable security-by-design and reverse the attacker's advantage. This tutorial provides an overview of diverse methodologies from game theory that includes games of incomplete information, dynamic games, mechanism design theory to offer a modern theoretic underpinning of a science of cybersecurity. The tutorial will also discuss open problems and research challenges that the CCS community can address and contribute with an objective to build a multidisciplinary bridge between cybersecurity, economics, game and decision theory

    Approximate Analysis of Large Simulation-Based Games.

    Full text link
    Game theory offers powerful tools for reasoning about agent behavior and incentives in multi-agent systems. Traditional approaches to game-theoretic analysis require enumeration of all possible strategies and outcomes. This often constrains game models to small numbers of agents and strategies or simple closed-form payoff descriptions. Simulation-based game theory extends the reach of game-theoretic analysis through the use of agent-based modeling. In the simulation-based approach, the analyst describes an environment procedurally and then computes payoffs by simulation of agent interactions in that environment. I use simulation-based game theory to study a model of credit network formation. Credit networks represent trust relationships in a directed graph and have been proposed as a mechanism for distributed transactions without a central currency. I explore what information is important when agents make initial decisions of whom to trust, and what sorts of networks can result from their decisions. This setting demonstrates both the value of simulation-based game theory—extending game-theoretic analysis beyond analytically tractable models—and its limitations—simulations produce prodigious amounts of data, and the number of simulations grows exponentially in the number of agents and strategies. I propose several techniques for approximate analysis of simulation-based games with large numbers of agents and large amounts of simulation data. First, I show how bootstrap-based statistics can be used to estimate confidence bounds on the results of simulation-based game analysis. I show that bootstrap confidence intervals for regret of approximate equilibria are well-calibrated. Next, I describe deviation-preserving reduction, which approximates an environment with a large number of agents using a game model with a small number of players, and demonstrate that it outperforms previous player reductions on several measures. Finally, I employ machine learning to construct game models from sparse data sets, and provide evidence that learned game models can produce even better approximate equilibria in large games than deviation-preserving reduction.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113587/1/btwied_1.pd

    Mean-Field-Type Games in Engineering

    Full text link
    A mean-field-type game is a game in which the instantaneous payoffs and/or the state dynamics functions involve not only the state and the action profile but also the joint distributions of state-action pairs. This article presents some engineering applications of mean-field-type games including road traffic networks, multi-level building evacuation, millimeter wave wireless communications, distributed power networks, virus spread over networks, virtual machine resource management in cloud networks, synchronization of oscillators, energy-efficient buildings, online meeting and mobile crowdsensing.Comment: 84 pages, 24 figures, 183 references. to appear in AIMS 201
    • …
    corecore