170 research outputs found

    Optimal Morphs of Convex Drawings

    Get PDF
    We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.Comment: To appear in SoCG 201

    NodeTrix Planarity Testing with Small Clusters

    Full text link
    We study the NodeTrix planarity testing problem for flat clustered graphs when the maximum size of each cluster is bounded by a constant kk. We consider both the case when the sides of the matrices to which the edges are incident are fixed and the case when they can be chosen arbitrarily. We show that NodeTrix planarity testing with fixed sides can be solved in O(k3k+32â‹…n)O(k^{3k+\frac{3}{2}} \cdot n) time for every flat clustered graph that can be reduced to a partial 2-tree by collapsing its clusters into single vertices. In the general case, NodeTrix planarity testing with fixed sides can be solved in O(n)O(n) time for k=2k = 2, but it is NP-complete for any k>2k > 2. NodeTrix planarity testing remains NP-complete also in the free sides model when k>4k > 4.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Two-Page Book Embeddings of 4-Planar Graphs

    Get PDF
    Back in the Eighties, Heath showed that every 3-planar graph is subhamiltonian and asked whether this result can be extended to a class of graphs of degree greater than three. In this paper we affirmatively answer this question for the class of 4-planar graphs. Our contribution consists of two algorithms: The first one is limited to triconnected graphs, but runs in linear time and uses existing methods for computing hamiltonian cycles in planar graphs. The second one, which solves the general case of the problem, is a quadratic-time algorithm based on the book-embedding viewpoint of the problem.Comment: 21 pages, 16 Figures. A shorter version is to appear at STACS 201

    Cubic Augmentation of Planar Graphs

    Full text link
    In this paper we study the problem of augmenting a planar graph such that it becomes 3-regular and remains planar. We show that it is NP-hard to decide whether such an augmentation exists. On the other hand, we give an efficient algorithm for the variant of the problem where the input graph has a fixed planar (topological) embedding that has to be preserved by the augmentation. We further generalize this algorithm to test efficiently whether a 3-regular planar augmentation exists that additionally makes the input graph connected or biconnected. If the input graph should become even triconnected, we show that the existence of a 3-regular planar augmentation is again NP-hard to decide.Comment: accepted at ISAAC 201

    Algorithms and Bounds for Drawing Non-planar Graphs with Crossing-free Subgraphs

    Full text link
    We initiate the study of the following problem: Given a non-planar graph G and a planar subgraph S of G, does there exist a straight-line drawing {\Gamma} of G in the plane such that the edges of S are not crossed in {\Gamma} by any edge of G? We give positive and negative results for different kinds of connected spanning subgraphs S of G. Moreover, in order to enlarge the subset of instances that admit a solution, we consider the possibility of bending the edges of G not in S; in this setting we discuss different trade-offs between the number of bends and the required drawing area.Comment: 21 pages, 9 figures, extended version of 'Drawing Non-planar Graphs with Crossing-free Subgraphs' (21st International Symposium on Graph Drawing, 2013
    • …
    corecore