589 research outputs found

    Stability Analysis for Markovian Jump Neutral Systems with Mixed Delays and Partially Known Transition Rates

    Get PDF
    The delay-dependent stability problem is studied for Markovian jump neutral systems with partial information on transition probabilities, and the considered delays are mixed and model dependent. By constructing the new stochastic Lyapunov-Krasovskii functional, which combined the introduced free matrices with the analysis technique of matrix inequalities, a sufficient condition for the systems with fully known transition rates is firstly established. Then, making full use of the transition rate matrix, the results are obtained for the other case, and the uncertain neutral Markovian jump system with incomplete transition rates is also considered. Finally, to show the validity of the obtained results, three numerical examples are provided

    H

    Get PDF
    This paper discusses H∞ control problems of continuous-time and discrete-time singular Markovian jump systems (SMJSs) with bounded transition probabilities. Improved sufficient conditions for continuous-time SMJSs to be regular, impulse free, and stochastically stable with γ-disturbance attenuation are established via less conservative inequality to estimate the transition jump rates, so are the discrete-time SMJSs. With the obtained conditions, the design of a state feedback controller which ensures the resulting closed-loop system to be stochastically admissible and with H∞ performance is given in terms of linear matrix inequalities (LMIs). Finally, illustrative examples are presented to show the effectiveness and the benefits of the proposed approaches

    Filtering for discrete-time nonhomogeneous Markov jump systems with uncertainties

    Get PDF
    This paper studies the problem of robust H1 filtering for a class of uncertain discrete-time nonhomogeneous Markov jump systems. The time-varying jump transition probability matrix is described by a polytope. By Lyapunov function approach, mode-dependent and variation-dependent H1 filter is designed such that the resulting error dynamic system is stochastically stable and has a prescribed H1 performance index. A numerical example is given to illustrate the effectiveness of the developed techniques

    Finite-Time Boundedness for a Class of Delayed Markovian Jumping Neural Networks with Partly Unknown Transition Probabilities

    Get PDF
    This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results
    • …
    corecore