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This paper studies the problem of robust H1 filtering for a class of uncertain discrete-time
nonhomogeneous Markov jump systems. The time-varying jump transition probability
matrix is described by a polytope. By Lyapunov function approach, mode-dependent and
variation-dependent H1 filter is designed such that the resulting error dynamic system
is stochastically stable and has a prescribed H1 performance index. A numerical example
is given to illustrate the effectiveness of the developed techniques.
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1. Introduction

Owing to the pioneering work on Markov jump systems (MJSs) [9] in the mid 1960s, this kind of stochastic system has
attracted much attention due to its wide range of applications in many practical dynamical systems, such as economic
systems [3], solar thermal receiver systems [17] and communication systems [2]. MJSs can describe realistically many
systems, with abrupt structures and parameters variations, which are caused by sudden environmental changes, switching
of the system to different working points, unexpected disturbances to the system, failures and repairs of components or
interconnections, etc. In the past decades, the stochastic stability issue on MJSs has been widely investigated, leading to
the systematic formulations of many stochastic stability, and filtering problems on discrete time MJSs [1,6,7,10–13,
24–27,36]. They are under the assumption that the transition jump probabilities of the MJSs are time-invariant. Intensive
research has been carried out for issues related to control [4,8,14,15,19,28,35] and fault detection [30]. Some results are also
obtained for cases involving MJSs with completely known transition jump probabilities or partially known transition jump
probabilities. See for example, [22,29,37] and the references cited therein.

However, this assumption is not realistic in many situations, and the transition probability of Markov jump system is a
time-dependent and time-varying matrix. One typical example is networked systems, in which packet dropouts and network
delays evolve in Markov chains or Markov processes, however, internet delay or packet dropouts are different in different
period, this will bring in time-varying transition probabilities as the transition rates vary though the whole working region.
Another example is the failures and repairs of subsystems on discrete-time Markov systems, which depends deeply on
system age and working time, this leads to time-varying transition matrix. A real system is DC Motor system, it is known
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that the dynamics of DC Motors are reasonable to be described by second-order linear systems, and then, angular velocity of
the motor shaft and the electrical current are two variables of the motor. In such case, abrupt changes on the power trans-
mitted to the shaft will totally change the speed of motors, and this fact motivates us to model these systems by Markov
jump chain, hence, the probabilities of the transition of these multiple circuits are not fixed. One feasible and reasonable
assumption is to use a polytope set to describe this characteristics of uncertainties caused by time-varying transition prob-
abilities. The main reason is that although the transition probability of the Markov process is not exactly known, but one can
evaluate some values in some points, and assume that the time-varying transition probabilities evolve in this polytope,
which belongs to a convex set. This time-varying transition probabilities matrix give rise to the nonhomogeneous Markov
jump systems.

On the other hand, it is well known that filtering is an important research topic in control [31–34], and received much
attention. In recent years, under the assumption that the transition probabilities are time invariant, many results on filtering
and estimation have been reported for stochastic systems, such as Kalman filtering [16], robust filtering [18], and H1 filtering
and adaptive estimation [5,20,23,38]. Since H1 filtering has an advantage in dealing with external unknown noises, it is more
appropriate to discuss the H1 filtering problem for nonhomogeneous systems.

The rest of the paper is organized as follows: Section 2 contains problem statement and preliminaries results. In Section 3,
H1 performance for the resulting error dynamic system is analyzed. A robust H1 filter is designed such that error dynamic
system is stochastically stable and satisfies a prescribed H1 performance index in Section 4. A numerical example is given to
illustrate the effectiveness of our approach in Section 5. Finally, some concluding remarks are given in Section 6.

In the sequel, the notation Rn stands for an n-dimensional Euclidean space, the transpose of a matrix A is denoted by
AT; Ef�g denotes the mathematical statistical expectation; Ln

2½0;1Þ stands for the space of n-dimensional square integrable
functions over ½0;1Þ; a positive-definite matrix is denoted by P > 0; I is the unit matrix with appropriate dimension, and
� means the symmetric term in a symmetric matrix.

2. Problem statement and preliminaries

Consider a probability space ðM; F; PÞ, where M; F and P represent, respectively, the sample space, the algebra of events
and the probability measure defined on F. The uncertain discrete-time Markov jump systems (MJSs) considered in this paper
are given below:
xkþ1 ¼ AðrkÞxk þ BðrkÞwk þ gðxk; rkÞ
yk ¼ CðrkÞxk þ DðrkÞwk

zk ¼ HðrkÞxk þ LðrkÞwk

8><>: ð2:1Þ
where frk; k P 0g is the concerned discrete time Markov stochastic process, which takes values in a finite state set
K ¼ f1;2;3; . . . ;Ng, and r0 represents the initial mode; the transition probability matrix is defined as
PðkÞ ¼ fpijðkÞg; i; j 2 K and pijðkÞ ¼ Pðrkþ1 ¼ jjrk ¼ iÞ is the transition probability from mode i at time k to mode j at time

kþ 1, such that pijðkÞP 0 and
PN

j¼1pijðkÞ ¼ 1. AðrkÞ; BðrkÞ; CðrkÞ; DðrkÞ; HðrkÞ and LðrkÞ are mode-dependent constant matri-

ces with appropriate dimensions at the working instant k; gð�Þ is time-dependent and norm-bounded uncertainties; xk 2 Rn is
the state vector of the system; uk 2 Rm is the input vector of the system; yk 2 Rp is the output vector of the system; zk 2 Rp is
the controlled output vector of the system; and wk 2 Lq

2½0;1� is the external disturbance vector of the system.

Assumption 2.1. The norm-bounded uncertainty gð�Þ in system (2.1) is assumed to satisfy
gðxk; rkÞ ¼ DAðrkÞxk
and
DAðrkÞ ¼ MðrkÞ �!ðrkÞ � NðrkÞ
where MðrkÞ and NðrkÞ are constant matrices with appropriate dimensions, !ðrkÞ is an unknown matrix with Lebesgue mea-
surable elements satisfying !TðrkÞ!ðrkÞ � 1.

System (2.1) can be written as:
xkþ1 ¼ ðAðrkÞ þ DAðrkÞÞxk þ BðrkÞwk

yk ¼ CðrkÞxk þ DðrkÞwk

zk ¼ HðrkÞxk þ LðrkÞwk

8><>: ð2:2Þ
For simplicity, when rk ¼ i; i 2 K, the matrices AðrkÞ; DAðrkÞ; BðrkÞ; CðrkÞ, DðrkÞ; HðrkÞ and LðrkÞ are, respectively, denoted as
AðiÞ; DAðiÞ; BðiÞ; CðiÞ; DðiÞ, HðiÞ and LðiÞ.

To estimate the signal zk in system (2.2), a general filter is constructed as follows:
x̂kþ1 ¼ Af ðiÞx̂k þ Bf ðiÞyk

ẑk ¼ Cf ðiÞx̂k þ Df ðiÞyk

(
ð2:3Þ
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where x̂k is the filter state vector, yk is the input of the filter, Af ðiÞ; Bf ðiÞ; Cf ðiÞ and Df ðiÞ are filter gains to be determined.
Clearly, system (2.3) is mode-dependent. Augmenting system (2.2) to include the states of the filter, we obtain the following
error dynamical system:
�xkþ1 ¼ AðiÞ�xk þ BðiÞwk

�zk ¼ CðiÞ�xk þ DðiÞwk

(
ð2:4Þ� � � � � �
where �zk ¼ zk � ẑk; �xk ¼
xk

x̂k
; AðiÞ ¼ AðiÞ þ DAðiÞ 0

Bf ðiÞCðiÞ Af ðiÞ
, BðiÞ ¼ BðiÞ

Bf ðiÞDðiÞ
, CðiÞ ¼ HðiÞ � Df ðiÞCðiÞ �Cf ðiÞ

� �
; DðiÞ ¼

LðiÞ � Df ðiÞDðiÞ
� �

.
Note that if PðkÞ is a constant matrix, the Markov jump system follows a homogeneous Markov chain or Markov process,

and on the other hand, if the transition probability matrix is time-varying, then the Markov chain or Markov process is a
nonhomogeneous one. The Markov jump system we considered in this paper evolves as a nonhomogeneous Markov process.
The variation of the transition probabilities is described as a polytope, and the form is given below:
PðkÞ ¼
Xw

s¼1

asðkÞPs
where Ps ¼ fps
ijg; s ¼ 1; . . . ;w, are given matrices representing the vertices of the polytope,

0 6 asðkÞ � 1 and
Pw

s¼1asðkÞ ¼ 1.
To proceed further, some definitions and lemmas for system (2.4) are given below:

Definition 2.1. For any initial mode r0, and a given initial state �x0, system (2.4) (with wk ¼ 0) is said to be robustly
stochastically stable if the following condition holds:
lim
m!1

E
Xm

k¼0

�xT
k�xkj�x0; r0

( )
<1 ð2:5Þ
Lemma 2.1 [21]. Let Q ; W; S and V be real matrices with appropriate dimensions. Suppose that S is chosen that STS 6 I. Then, for
a positive scalar a > 0, it holds that
Q þWSV þ VTSTWT
6 Q þ a�1WWT þ aVTV
Definition 2.2. For a given constant c > 0, system (2.4) is said to be stochastically stable and satisfies an H1 performance
index c, if it is robustly stochastically stable and the following condition is satisfied.
E
X1
k¼0

�zT
k
�zk

( )
6 c2E

X1
k¼0

wT
kwk

( )
ð2:6Þ
We may now state formally the purpose of the paper as follows. Consider system (2.1) with time-varying jump transition
probabilities. Design a mode-dependent and parameter-dependent filter (2.3), such that the resulting filtering error system
(2.4) is stochastically stable and satisfies a prescribed H1 performance index.
3. H‘ Error performance analysis

In order to minimize the influences of the disturbances, H1 performance index is analyzed for system (2.4) subject to all
admissible disturbances. In this way, system (2.4) is stochastically stable and has a prescribed H1 index c.

Theorem 3.1. Consider system (2.4) (with wk – 0) and let c > 0 be a given constant. Suppose that there exist a set of positive
definite symmetric matrices PsðiÞ and PqðjÞ such that
HsqðiÞ ¼

�ePsqðiÞ 0 ePsqðiÞAðiÞ ePsqðiÞBðiÞ
� �I CðiÞ DðiÞ
� � �ePsðiÞ 0
� � � �c2I

266664
377775 < 0 8i 2 K ð3:1Þ
where
ePsqðiÞ ¼
XN

j¼1

Xw

s¼1

Xw

q¼1

asðkÞbqðkÞps
ijPqðjÞ
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ePsðiÞ ¼
Xw

s¼1

asðkÞPsðiÞ
Then, system (2.4) is stochastically stable with wk ¼ 0, and satisfies a prescribed H1 performance index c.
Proof. State equations of system (2.4) (with wk ¼ 0) can be written as:
�xkþ1 ¼ AðiÞ�xk ð3:2Þ
Construct a parameter-dependent and mode-dependent Lyapunov function given below:
Vð�xk; iÞ ¼
Xw

s¼1

asðkÞ�xT
kPsðiÞ�xk ði 2 KÞ ð3:3Þ
where
0 6 asðkÞ � 1;
Xw

s¼1

asðkÞ ¼ 1; PsðiÞ > 0
We obtain
DVð�xk; iÞ ¼ EfVð�xkþ1; iÞg � Vð�xk; iÞ ¼ �xT
k ATðiÞ

XN

j¼1

Xw

s¼1

Xw

s¼1

asðkÞasðkþ 1Þps
ijPsðjÞAðiÞ

" #
�xk � �xT

k

Xw

s¼1

asðkÞPsðiÞ�xk
Denote
Xw

s¼1

asðkþ 1ÞPsðjÞ ¼
Xw

q¼1

bqðkÞPqðjÞ
Then, we have
DVð�xk; iÞ ¼ �xT
k ½ATðiÞ

XN

j¼1

Xw

s¼1

Xw

q¼1

asðkÞbqðkÞps
ijPqðjÞ

 !
AðiÞ��xk � �xT

k

Xw

s¼1

asðkÞPsðiÞ�xk ¼ �xT
kNði; kÞ�xk
Denote
Nði; kÞ ¼ �
Xw

s¼1

asðkÞPsðiÞ þ ATðiÞ
XN

j¼1

Xw

s¼1

Xw

q¼1

asðkÞbqðkÞps
ijPqðjÞ

 !
AðiÞ < 0 8i 2 K ð3:4Þ
where
0 6 asðkÞ � 1;
Xw

s¼1

asðkÞ ¼ 1

0 6 bqðkÞ � 1;
Xw

q¼1

bqðkÞ ¼ 1
For system (3.2), condition (3.4) implies that
DVð�xk; iÞ < 0 ði 2 KÞ
Let
g ¼min
k
fkminð�Nði; kÞÞg 8i 2 K
where kminð�Nði; kÞÞ is the minimal eigenvalue of �Nði; kÞ. Then,
DVð�xk; iÞ 6 �g�xT
k�xk
Thus,
E
XT

k¼0

DVð�xk; iÞ
( )

¼ EfVð�xTþ1; iÞg � Vð�x0; iÞ 6 �gE
XT

k¼0

k�xkk2

( )

This, in turn, implies that
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E
XT

k¼0

k�xkk2

( )
6

1
g
fVð�x0; iÞ � EfVð�xTþ1; iÞgg 6

1
g

Vð�x0; iÞ

lim
T!1

E
XT

k¼0

k�xkk2

( )
6

1
g

Vð�x0; iÞ
By Definition 2.1, system (2.4) (with wk ¼ 0) is stochastically stable.
Then, consider the Lyapunov function (3.3) for system (2.4). We can show that
DVð�xk; iÞ ¼ EfVð�xkþ1; iÞg � Vð�xk; iÞ ¼ ðAðiÞ�xk þ BðiÞwkÞ
TePsqðiÞðAðiÞ�xk þ BðiÞwkÞ � �xT

k
ePsðiÞ�xk

¼ �xT
k ½ATðiÞePsqðiÞAðiÞ � ePsðiÞ��xk þ 2�xT

kATðiÞePsqðiÞBðiÞwk þwT
kBTðiÞePsqðiÞBðiÞwk
To establish the H1 performance for the system, the following cost function is introduced for system (2.4):
JðTÞ ¼ E
XT

k¼0

�zT
k
�zk

( )
� c2E

XT

k¼0

wT
kwk

( )
ð3:5Þ
Under zero initial condition, JðTÞ can be written as:
JðTÞ 6 E
XT

k¼0

½�zT
k
�zk � c2wT

kwk þ DVð�xk; iÞ�
( )

ð3:6Þ
Thus, we have
JðTÞ 6 E
XT

k¼0

½�zT
k
�zk � c2wT

kwk þ DVð�xk; iÞ�
( )

¼ E
XT

k¼0

f½CðiÞ�xk þ DðiÞwk�
T½CðiÞ�xk þ DðiÞwk� � c2wT

kwk þ DVð�xk; iÞg
( )

¼ E
XT

k¼0

f½CðiÞ�xk þ DðiÞwk�
T½CðiÞ�xk þ DðiÞwk� � c2wT

kwkg
( )

þ E
XT

k¼0

½�xT
k ½ATðiÞePsqðiÞAðiÞ � ePsðiÞ��xk þ 2�xT

kATðiÞePsqðiÞBðiÞwk�
( )

þ E
XT

k¼0

wT
kBTðiÞePsqðiÞBðiÞwk

( )

By Schur complement, it follows that
JðTÞ 6 ~xT
kHsqðiÞ~xk
where
~xk ¼ �xT
k wT

k

� �

Under the assumption that wk ¼ 0; HsqðiÞ < 0 implies inequality 3.4. Following a similar argument given above, we can show
that system (2.4) is stochastically stable. On the other hand, as T !1; HsqðiÞ < 0 results in Jð1Þ < �Vðx1; iÞ < 0, that is
E
X1
k¼0

�zT
k
�zk

( )
6 c2E

X1
k¼0

wT
kwk

( )
ð3:7Þ
By Definition 2.2, it follows that system (2.4) is stochastically stable and satisfies a prescribed H1 performance if 3.1 holds,
which completes the proof. h
Remark 3.1. If we select Af ðiÞ Bf ðiÞ Cf ðiÞ Df ðiÞ
� �

¼ Af Bf Cf Df½ � in system (2.4), one can obtain a mode-independent
filter which is more conservative. Note that if we set

Pw
s¼1asðkÞPsðiÞ ¼ PðiÞ, then, the results we obtained can be applied to

general homogeneous stochastic systems. Clearly, homogeneous Markov jump system is a special case of the system under
consideration in this paper.
4. Robust H‘ filter design

Sufficient conditions for the existence of an admissible mode-dependent H1 filter in the form of (2.3) for system (2.1) are
presented in the following theorems.

Theorem 4.1. Consider system (2.4) with time-varying jump transition probabilities, and let c > 0 be a given constant. Suppose
that there exists a set of positive definite symmetric matrices PsðiÞ; PqðjÞ and mode-dependent matrices XðiÞ such that
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XsqðiÞ ¼

�XðiÞ � XTðiÞ þ bPsqðiÞ 0 XðiÞAðiÞ XðiÞBðiÞ
� �I CðiÞ DðiÞ
� � �PsðiÞ 0
� � � �c2I

266664
377775 < 0 8i 2 K ð4:1Þ
where
bPsqðiÞ ¼
XN

j¼1

ps
ijPqðjÞ; s; q ¼ 1; . . . ;w
Then, system (2.4) is stochastically stable and satisfies a prescribed H1 performance index c.
Proof. Note that for system (2.4) to be stochastically stable and has a prescribed H1 performance index, it is required that all
the vertices of the polytope are to satisfy the stability requirements as shown in Theorem 3.1.

Now, by Theorem 3.1, we have
X1sqðiÞ ¼

��PsqðiÞ 0 �PsqðiÞAðiÞ �PsqðiÞBðiÞ
� �I CðiÞ DðiÞ
� � �PsðiÞ 0
� � � �c2I

266664
377775 < 0 8i 2 K ð4:2Þ
where
�PsqðiÞ ¼
XN

j¼1

Xw

q¼1

bqðkÞps
ijPqðjÞ
which, in turn, implies that
X2sqðiÞ ¼

�bPsqðiÞ 0 bPsqðiÞAðiÞ bPsqðiÞBðiÞ
� �I CðiÞ DðiÞ
� � �PsðiÞ 0
� � � �c2I

266664
377775 < 0 8i 2 K ð4:3Þ
In order to avoid the cross-coupling of matrix product terms in condition (4.3), a slack matrix XðiÞ is considered here. Then,
after standard matrix manipulation, condition (4.1) is obtained.Therefore, system (2.4) is stochastically stable and has a pre-
scribed H1 performance index. This concludes the proof of Theorem 4.1.Next, by Theorem 4.1, we will design the robust H1
filter for system (2.1), so as to ensure that the resulting error dynamic system (2.4) is stochastically stable and has a pre-
scribed H1 performance index. h
Theorem 4.2. Consider system (2.4) with time-varying jump transition probabilities, and let c > 0 be a given constant. Suppose
that there exist matrices P1sðiÞ > 0; P3sðiÞ > 0 and mode-dependent matrices P2sðiÞ; RðiÞ; YðiÞ; ZðiÞ; AFðiÞ; BFðiÞ; CFðiÞ; DFðiÞ and
aðiÞ > 0 such that the following condition has a feasible solution
CsqðiÞ ¼

a1 a2 0 RðiÞAðiÞ þ BFðiÞCðiÞ AFðiÞ RðiÞBðiÞ þ BFðiÞDðiÞ RðiÞMðiÞ
� a3 0 ZðiÞAðiÞ þ BFðiÞCðiÞ AFðiÞ ZðiÞBðiÞ þ BFðiÞDðiÞ ZðiÞMðiÞ
� � �I HðiÞ � DFðiÞCðiÞ �CFðiÞ LðiÞ � DFðiÞDðiÞ 0
� � � �P1sðiÞ þ aðiÞNTðiÞNðiÞ �P2sðiÞ 0 0
� � � � �P3sðiÞ 0 0
� � � � � �c2I 0
� � � � � � �aðiÞ

2666666666664

3777777777775
< 0 ð4:4Þ
where i 2 K; s; q ¼ 1; . . . ;w, a1 ¼ �RðiÞ � RTðiÞ þ P1qðjÞ, a2 ¼ �YðiÞ � ZTðiÞ þ P2qðjÞ, a3 ¼ �YðiÞ � YTðiÞ þ P3qðjÞ. Then, a mode-
dependent filter (2.3) with the gain matrices shown below is obtained, such that the resulting filtering error system (2.4)
is stochastically stable and satisfies a prescribed H1 performance index c, and the gain matrices of the filter are given by
Af ðiÞ ¼ AFðiÞY�1ðiÞ; Bf ðiÞ ¼ BFðiÞY�1ðiÞ, Cf ðiÞ ¼ CFðiÞ; Df ðiÞ ¼ DFðiÞ.
Proof. Consider the filtering error system (2.4) and denote
PsðiÞ ¼
P1sðiÞ P2sðiÞ
� P3sðiÞ

� �
> 0; XðiÞ ¼

RðiÞ YðiÞ
ZðiÞ YðiÞ

� �
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Then, by Theorem 4.1, XsqðiÞ < 0 implies
C1sqðiÞ ¼

a1 a2 0 a4 YðiÞAf ðiÞ RðiÞBðiÞ þ YðiÞBf ðiÞDðiÞ
� a3 0 a5 YðiÞAf ðiÞ ZðiÞBðiÞ þ YðiÞBf ðiÞDðiÞ
� � �I HðiÞ � Df ðiÞCðiÞ �Cf ðiÞ LðiÞ � Df ðiÞDðiÞ
� � � �P1sðiÞ �P2sðiÞ 0
� � � � �P3sðiÞ 0
� � � � � �c2I

2666666664

3777777775
< 0 ð4:5Þ
where
a4 ¼ RðiÞðAðiÞ þ DAðiÞÞ þ YðiÞBf ðiÞCðiÞ

a5 ¼ ZðiÞðAðiÞ þ DAðiÞÞ þ YðiÞBf ðiÞCðiÞ
Clearly, C1sqðiÞ < 0 gives rise to
C2sqðiÞ þ T1ðiÞ!ðiÞT2ðiÞ þ TT
2ðiÞ!

TðiÞTT
1ðiÞ < 0
where
C2sqðiÞ ¼

a1 a2 0 a6 YðiÞAf ðiÞ RðiÞBðiÞ þ YðiÞBf ðiÞDðiÞ
� a3 0 a7 YðiÞAf ðiÞ ZðiÞBðiÞ þ YðiÞBf ðiÞDðiÞ
� � �I HðiÞ � Df ðiÞCðiÞ �Cf ðiÞ LðiÞ � Df ðiÞDðiÞ
� � � �P1sðiÞ �P2sðiÞ 0
� � � � �P3sðiÞ 0
� � � � � �c2I

2666666664

3777777775
< 0 ð4:6Þ

a6 ¼ RðiÞAðiÞ þ YðiÞBf ðiÞCðiÞ

a7 ¼ ZðiÞAðiÞ þ YðiÞBf ðiÞCðiÞ

TT
1ðiÞ ¼ MTðiÞXTðiÞ MTðiÞZTðiÞ 0 0 0 0

� �
TT

2ðiÞ ¼
0 0
0 NðiÞ 0 0

� �

Denote
AFðiÞ ¼ Af ðiÞYðiÞ; BFðiÞ ¼ Bf ðiÞYðiÞ; CFðiÞ ¼ Cf ðiÞ; DFðiÞ ¼ Df ðiÞ
Then, by Lemma 2.1 and Schur complement, C2sqðiÞ < 0 holds if CsqðiÞ < 0.
Therefore, if (4.4) holds, the filtering error system (2.4) is stochastically stable and satisfies a prescribed H1 performance

index c. Moreover, the parameters of the filter are given by Af ðiÞ ¼ AFðiÞY�1ðiÞ, Bf ðiÞ ¼ BFðiÞY�1ðiÞ; Cf ðiÞ ¼ CFðiÞ, Df ðiÞ ¼ DFðiÞ.
This completes the proof. h
Remark 4.1. Note that in order to get the optimal H1 performance index c for system (2.4), we set c2 ¼ e. Then, Theorem 4.2
can be cast as an optimization problem as follows:
min e

s:t: LMI ð4:7Þ

C3sqðiÞ ¼

a1 a2 0 RðiÞAðiÞ þ BFðiÞCðiÞ AFðiÞ RðiÞBðiÞ þ BFðiÞDðiÞ RðiÞMðiÞ
� a3 0 ZðiÞAðiÞ þ BFðiÞCðiÞ AFðiÞ ZðiÞBðiÞ þ BFðiÞDðiÞ ZðiÞMðiÞ
� � �I HðiÞ � DFðiÞCðiÞ �CFðiÞ LðiÞ � DFðiÞDðiÞ 0
� � � �P1sðiÞ þ aðiÞNTðiÞNðiÞ �P2sðiÞ 0 0
� � � � �P3sðiÞ 0 0
� � � � � �eI 0
� � � � � � �aðiÞ

2666666666664

3777777777775
< 0 ð4:7Þ
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Remark 4.2. By solving (4.7), one obtain the filter corresponding to the optimal H1 performance index. It is worth mention-
ing that time-invariant jump probability matrix is a special case of time-varying ones, as the transition probabilities in the
filer are time-variant, so the filter (2.3) is not only mode-dependent but also variant-dependent. A convex Lyapunov function
is addressed in this paper which bring in less conservatism.
5. Simulation results

Consider nonhomogeneous discrete-time MJSs, which are aggregated into 2 modes, where
Að1Þ ¼
0 �0:45

0:9 0:9

� �
; Að2Þ ¼

0 �0:29
0:9 1:26

� �

Bð1Þ ¼
0:5
1:1

� �
; Bð2Þ ¼

0:6
1:4

� �

Cð1Þ ¼ 0:5 0:4½ �; Cð2Þ ¼ 0:3 0:1½ �

Dð1Þ ¼ 0:9½ �; Dð2Þ ¼ �0:6½ �

Hð1Þ ¼ 0:8 �0:2½ �; Hð2Þ ¼ 0:1 0:5½ �

Lð1Þ ¼ 1:88; Lð2Þ ¼ 1:98

Mð1Þ ¼
0:1
0:1

� �
; Mð2Þ ¼

0:1
0:1

� �

Nð1Þ ¼ 0:1 0:1½ �; Nð2Þ ¼ 0:1 0:1½ �
The vertices of the time-varying transition probability matrix are given by
P1 ¼
0:2 0:8

0:35 0:65

� �
; P2 ¼

0:55 0:45
0:48 0:52

� �

P3 ¼
0:6 0:4
0:3 0:7

� �
; P4 ¼

0:4 0:6
0:9 0:1

� �

Our purpose is to design an H1 filter for system (2.1) such that the resulting filtering error system (2.4) is stochastically sta-
ble with an H1 noise attenuation performance index.

Apply the obtained parameters to filter (2.3), set initial condition as x0 ¼ �0:5 0:4½ �T; c ¼ 0:8, initial condition for the
filter as 0 0½ �T and the noise signal as wk ¼ 0:5expð�0:1kÞsinð0:01pkÞ. Then, we obtain the state trajectories of system
(2.1), jumping modes and filtering error response of the resulting filtering error system (2.4) as shown in Figs. 1–3. It is
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Fig. 1. Trajectories of system states.
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Fig. 2. Jumping modes.
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Fig. 3. Filtering error response.
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clearly observed from the simulation result that under the designed filter, system (2.1) is stochastically stable and has a
prescribed H1 performance index.

Remark 5.1. By solving LMI (4.7), one can obtain the optimal value of the H1 performance index, the mode-independent H1
performance index c is also given in the following form, and it is obvious that mode-independent filter bring in some
conservativeness.
Case
 Mode-dependent
 Mode-independent
cmin
 0.68
 1.54
Fig. 1 shows one case of the jumping modes expressed by time-varying transition probabilities.
6. Conclusions

In this paper, the issue on robust H1 filtering for a class of uncertain discrete-time nonhomogeneous Markov jump sys-
tems is addressed, and the transition probabilities is expressed as a polytope, in which vertices are given a priori, and the
filter designed ensures that the resulting error dynamic system is stochastically stable and satisfies a prescribed H1 perfor-
mance index. The simulation result shows the potential of the proposed techniques.
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