240 research outputs found

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    Orientation-Constrained Rectangular Layouts

    Full text link
    We construct partitions of rectangles into smaller rectangles from an input consisting of a planar dual graph of the layout together with restrictions on the orientations of edges and junctions of the layout. Such an orientation-constrained layout, if it exists, may be constructed in polynomial time, and all orientation-constrained layouts may be listed in polynomial time per layout.Comment: To appear at Algorithms and Data Structures Symposium, Banff, Canada, August 2009. 12 pages, 5 figure

    Compact Floor-Planning via Orderly Spanning Trees

    Full text link
    Floor-planning is a fundamental step in VLSI chip design. Based upon the concept of orderly spanning trees, we present a simple O(n)-time algorithm to construct a floor-plan for any n-node plane triangulation. In comparison with previous floor-planning algorithms in the literature, our solution is not only simpler in the algorithm itself, but also produces floor-plans which require fewer module types. An equally important aspect of our new algorithm lies in its ability to fit the floor-plan area in a rectangle of size (n-1)x(2n+1)/3. Lower bounds on the worst-case area for floor-planning any plane triangulation are also provided in the paper.Comment: 13 pages, 5 figures, An early version of this work was presented at 9th International Symposium on Graph Drawing (GD 2001), Vienna, Austria, September 2001. Accepted to Journal of Algorithms, 200

    Planar L-Drawings of Bimodal Graphs

    Full text link
    In a planar L-drawing of a directed graph (digraph) each edge e is represented as a polyline composed of a vertical segment starting at the tail of e and a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Our main focus is on bimodal graphs, i.e., digraphs admitting a planar embedding in which the incoming and outgoing edges around each vertex are contiguous. We show that every plane bimodal graph without 2-cycles admits a planar L-drawing. This includes the class of upward-plane graphs. Finally, outerplanar digraphs admit a planar L-drawing - although they do not always have a bimodal embedding - but not necessarily with an outerplanar embedding.Comment: Appears in the Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization (GD 2020
    corecore