228 research outputs found

    Direct 3D Tomographic Reconstruction and Phase-Retrieval of Far-Field Coherent Diffraction Patterns

    Get PDF
    We present an alternative numerical reconstruction algorithm for direct tomographic reconstruction of a sample refractive indices from the measured intensities of its far-field coherent diffraction patterns. We formulate the well-known phase-retrieval problem in ptychography in a tomographic framework which allows for simultaneous reconstruction of the illumination function and the sample refractive indices in three dimensions. Our iterative reconstruction algorithm is based on the Levenberg-Marquardt algorithm. We demonstrate the performance of our proposed method with simulation studies

    Undersampled Phase Retrieval with Outliers

    Full text link
    We propose a general framework for reconstructing transform-sparse images from undersampled (squared)-magnitude data corrupted with outliers. This framework is implemented using a multi-layered approach, combining multiple initializations (to address the nonconvexity of the phase retrieval problem), repeated minimization of a convex majorizer (surrogate for a nonconvex objective function), and iterative optimization using the alternating directions method of multipliers. Exploiting the generality of this framework, we investigate using a Laplace measurement noise model better adapted to outliers present in the data than the conventional Gaussian noise model. Using simulations, we explore the sensitivity of the method to both the regularization and penalty parameters. We include 1D Monte Carlo and 2D image reconstruction comparisons with alternative phase retrieval algorithms. The results suggest the proposed method, with the Laplace noise model, both increases the likelihood of correct support recovery and reduces the mean squared error from measurements containing outliers. We also describe exciting extensions made possible by the generality of the proposed framework, including regularization using analysis-form sparsity priors that are incompatible with many existing approaches.Comment: 11 pages, 9 figure

    Novel Fourier-domain constraint for fast phase retrieval in coherent diffraction imaging

    Full text link
    Coherent diffraction imaging (CDI) for visualizing objects at atomic resolution has been realized as a promising tool for imaging single molecules. Drawbacks of CDI are associated with the difficulty of the numerical phase retrieval from experimental diffraction patterns; a fact which stimulated search for better numerical methods and alternative experimental techniques. Common phase retrieval methods are based on iterative procedures which propagate the complex-valued wave between object and detector plane. Constraints in both, the object and the detector plane are applied. While the constraint in the detector plane employed in most phase retrieval methods requires the amplitude of the complex wave to be equal to the squared root of the measured intensity, we propose a novel Fourier-domain constraint, based on an analogy to holography. Our method allows achieving a low-resolution reconstruction already in the first step followed by a high-resolution reconstruction after further steps. In comparison to conventional schemes this Fourier-domain constraint results in a fast and reliable convergence of the iterative reconstruction process.Comment: 13 pages, 7 figure

    Phase Retrieval via Matrix Completion

    Full text link
    This paper develops a novel framework for phase retrieval, a problem which arises in X-ray crystallography, diffraction imaging, astronomical imaging and many other applications. Our approach combines multiple structured illuminations together with ideas from convex programming to recover the phase from intensity measurements, typically from the modulus of the diffracted wave. We demonstrate empirically that any complex-valued object can be recovered from the knowledge of the magnitude of just a few diffracted patterns by solving a simple convex optimization problem inspired by the recent literature on matrix completion. More importantly, we also demonstrate that our noise-aware algorithms are stable in the sense that the reconstruction degrades gracefully as the signal-to-noise ratio decreases. Finally, we introduce some theory showing that one can design very simple structured illumination patterns such that three diffracted figures uniquely determine the phase of the object we wish to recover

    Non-Convex Phase Retrieval from STFT Measurements

    Full text link
    The problem of recovering a one-dimensional signal from its Fourier transform magnitude, called Fourier phase retrieval, is ill-posed in most cases. We consider the closely-related problem of recovering a signal from its phaseless short-time Fourier transform (STFT) measurements. This problem arises naturally in several applications, such as ultra-short laser pulse characterization and ptychography. The redundancy offered by the STFT enables unique recovery under mild conditions. We show that in some cases the unique solution can be obtained by the principal eigenvector of a matrix, constructed as the solution of a simple least-squares problem. When these conditions are not met, we suggest using the principal eigenvector of this matrix to initialize non-convex local optimization algorithms and propose two such methods. The first is based on minimizing the empirical risk loss function, while the second maximizes a quadratic function on the manifold of phases. We prove that under appropriate conditions, the proposed initialization is close to the underlying signal. We then analyze the geometry of the empirical risk loss function and show numerically that both gradient algorithms converge to the underlying signal even with small redundancy in the measurements. In addition, the algorithms are robust to noise
    • …
    corecore