130,948 research outputs found

    On Field Size and Success Probability in Network Coding

    Full text link
    Using tools from algebraic geometry and Groebner basis theory we solve two problems in network coding. First we present a method to determine the smallest field size for which linear network coding is feasible. Second we derive improved estimates on the success probability of random linear network coding. These estimates take into account which monomials occur in the support of the determinant of the product of Edmonds matrices. Therefore we finally investigate which monomials can occur in the determinant of the Edmonds matrix.Comment: 16 pages, 3 figures, 2 tables. Accepted for publication at International Workshop on the Arithmetic of Finite Fields, WAIFI 200

    Random Linear Fountain Code with Improved Decoding Success Probability

    Full text link
    In this paper we study the problem of increasing the decoding success probability of random linear fountain code over GF(2) for small packet lengths used in delay-intolerant applications such as multimedia streaming. Such code over GF(2) are attractive as they have lower decoding complexity than codes over larger field size, but suffer from high transmission redundancy. In our proposed coding scheme we construct a codeword which is not a linear combination of any codewords previously transmitted to mitigate such transmission redundancy. We then note the observation that the probability of receiving a linearly dependent codeword is highest when the receiver has received k-1 linearly independent codewords. We propose using the BlockACK frame so that the codeword received after k-1 linearly independent codeword is always linearly independent, this reduces the expected redundancy by a factor of three.Comment: This paper appears in: Communications (APCC), 2016 22nd Asia-Pacific Conference o

    A Network Coding Approach to Loss Tomography

    Get PDF
    Network tomography aims at inferring internal network characteristics based on measurements at the edge of the network. In loss tomography, in particular, the characteristic of interest is the loss rate of individual links and multicast and/or unicast end-to-end probes are typically used. Independently, recent advances in network coding have shown that there are advantages from allowing intermediate nodes to process and combine, in addition to just forward, packets. In this paper, we study the problem of loss tomography in networks with network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities, and we show that it improves several aspects of tomography including the identifiability of links, the trade-off between estimation accuracy and bandwidth efficiency, and the complexity of probe path selection. We discuss the cases of inferring link loss rates in a tree topology and in a general topology. In the latter case, the benefits of our approach are even more pronounced compared to standard techniques, but we also face novel challenges, such as dealing with cycles and multiple paths between sources and receivers. Overall, this work makes the connection between active network tomography and network coding

    Localized Dimension Growth in Random Network Coding: A Convolutional Approach

    Get PDF
    We propose an efficient Adaptive Random Convolutional Network Coding (ARCNC) algorithm to address the issue of field size in random network coding. ARCNC operates as a convolutional code, with the coefficients of local encoding kernels chosen randomly over a small finite field. The lengths of local encoding kernels increase with time until the global encoding kernel matrices at related sink nodes all have full rank. Instead of estimating the necessary field size a priori, ARCNC operates in a small finite field. It adapts to unknown network topologies without prior knowledge, by locally incrementing the dimensionality of the convolutional code. Because convolutional codes of different constraint lengths can coexist in different portions of the network, reductions in decoding delay and memory overheads can be achieved with ARCNC. We show through analysis that this method performs no worse than random linear network codes in general networks, and can provide significant gains in terms of average decoding delay in combination networks.Comment: 7 pages, 1 figure, submitted to IEEE ISIT 201

    Construction algorithm for network error-correcting codes attaining the Singleton bound

    Full text link
    We give a centralized deterministic algorithm for constructing linear network error-correcting codes that attain the Singleton bound of network error-correcting codes. The proposed algorithm is based on the algorithm by Jaggi et al. We give estimates on the time complexity and the required symbol size of the proposed algorithm. We also estimate the probability of a random choice of local encoding vectors by all intermediate nodes giving a network error-correcting codes attaining the Singleton bound. We also clarify the relationship between the robust network coding and the network error-correcting codes with known locations of errors.Comment: To appear in IEICE Trans. Fundamentals (http://ietfec.oxfordjournals.org/), vol. E90-A, no. 9, Sept. 2007. LaTeX2e, 7 pages, using ieice.cls and pstricks.sty. Version 4 adds randomized construction of network error-correcting codes, comparisons of the proposed methods to the existing methods, additional explanations in the proo

    Improved Delay Estimates for a Queueing Model for Random Linear Coding for Unicast

    Get PDF
    Consider a lossy communication channel for unicast with zero-delay feedback. For this communication scenario, a simple retransmission scheme is optimum with respect to delay. An alternative approach is to use random linear coding in automatic repeat-request (ARQ) mode. We extend the work of Shrader and Ephremides, by deriving an expression for the delay of random linear coding over field of infinite size. Simulation results for various field sizes are also provided.Comment: 5 pages, 3 figures, accepted at the 2009 IEEE International Symposium on Information Theor
    • …
    corecore