122 research outputs found

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure

    Computing low-degree factors of lacunary polynomials: a Newton-Puiseux approach

    Full text link
    We present a new algorithm for the computation of the irreducible factors of degree at most dd, with multiplicity, of multivariate lacunary polynomials over fields of characteristic zero. The algorithm reduces this computation to the computation of irreducible factors of degree at most dd of univariate lacunary polynomials and to the factorization of low-degree multivariate polynomials. The reduction runs in time polynomial in the size of the input polynomial and in dd. As a result, we obtain a new polynomial-time algorithm for the computation of low-degree factors, with multiplicity, of multivariate lacunary polynomials over number fields, but our method also gives partial results for other fields, such as the fields of pp-adic numbers or for absolute or approximate factorization for instance. The core of our reduction uses the Newton polygon of the input polynomial, and its validity is based on the Newton-Puiseux expansion of roots of bivariate polynomials. In particular, we bound the valuation of f(X,ϕ)f(X,\phi) where ff is a lacunary polynomial and ϕ\phi a Puiseux series whose vanishing polynomial has low degree.Comment: 22 page

    Polar Varieties and Efficient Real Elimination

    Full text link
    Let S0S_0 be a smooth and compact real variety given by a reduced regular sequence of polynomials f1,...,fpf_1, ..., f_p. This paper is devoted to the algorithmic problem of finding {\em efficiently} a representative point for each connected component of S0S_0 . For this purpose we exhibit explicit polynomial equations that describe the generic polar varieties of S0S_0. This leads to a procedure which solves our algorithmic problem in time that is polynomial in the (extrinsic) description length of the input equations f1,>...,fpf_1, >..., f_p and in a suitably introduced, intrinsic geometric parameter, called the {\em degree} of the real interpretation of the given equation system f1,>...,fpf_1, >..., f_p.Comment: 32 page

    Formal Desingularization of Surfaces - The Jung Method Revisited -

    Get PDF
    In this paper we propose the concept of formal desingularizations as a substitute for the resolution of algebraic varieties. Though a usual resolution of algebraic varieties provides more information on the structure of singularities there is evidence that the weaker concept is enough for many computational purposes. We give a detailed study of the Jung method and show how it facilitates an efficient computation of formal desingularizations for projective surfaces over a field of characteristic zero, not necessarily algebraically closed. The paper includes a generalization of Duval's Theorem on rational Puiseux parametrizations to the multivariate case and a detailed description of a system for multivariate algebraic power series computations.Comment: 33 pages, 2 figure

    Succinct Hitting Sets and Barriers to Proving Lower Bounds for Algebraic Circuits

    Get PDF
    We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just as with the natural proofs notion of Razborov and Rudich (1997) for Boolean circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all lower bound techniques known. However, unlike in the Boolean setting, there has been no concrete evidence demonstrating that this is a barrier to obtaining super-polynomial lower bounds for general algebraic circuits, as there is little understanding whether algebraic circuits are expressive enough to support “cryptography” secure against algebraic circuits. Following a similar result of Williams (2016) in the Boolean setting, we show that the existence of an algebraic natural proofs barrier is equivalent to the existence of succinct derandomization of the polynomial identity testing problem, that is, to the existence of a hitting set for the class of poly(N)-degree poly(N)-size circuits which consists of coefficient vectors of polynomials of polylog(N) degree with polylog(N)-size circuits. Further, we give an explicit universal construction showing that if such a succinct hitting set exists, then our universal construction suffices. Further, we assess the existing literature constructing hitting sets for restricted classes of algebraic circuits and observe that none of them are succinct as given. Yet, we show how to modify some of these constructions to obtain succinct hitting sets. This constitutes the first evidence supporting the existence of an algebraic natural proofs barrier. Our framework is similar to the Geometric Complexity Theory (GCT) program of Mulmuley and Sohoni (2001), except that here we emphasize constructiveness of the proofs while the GCT program emphasizes symmetry. Nevertheless, our succinct hitting sets have relevance to the GCT program as they imply lower bounds for the complexity of the defining equations of polynomials computed by small circuits. A conference version of this paper appeared in the Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017)
    corecore