8,980 research outputs found

    Solving Games with Functional Regret Estimation

    Full text link
    We propose a novel online learning method for minimizing regret in large extensive-form games. The approach learns a function approximator online to estimate the regret for choosing a particular action. A no-regret algorithm uses these estimates in place of the true regrets to define a sequence of policies. We prove the approach sound by providing a bound relating the quality of the function approximation and regret of the algorithm. A corollary being that the method is guaranteed to converge to a Nash equilibrium in self-play so long as the regrets are ultimately realizable by the function approximator. Our technique can be understood as a principled generalization of existing work on abstraction in large games; in our work, both the abstraction as well as the equilibrium are learned during self-play. We demonstrate empirically the method achieves higher quality strategies than state-of-the-art abstraction techniques given the same resources.Comment: AAAI Conference on Artificial Intelligence 201

    Discovering Valuable Items from Massive Data

    Full text link
    Suppose there is a large collection of items, each with an associated cost and an inherent utility that is revealed only once we commit to selecting it. Given a budget on the cumulative cost of the selected items, how can we pick a subset of maximal value? This task generalizes several important problems such as multi-arm bandits, active search and the knapsack problem. We present an algorithm, GP-Select, which utilizes prior knowledge about similarity be- tween items, expressed as a kernel function. GP-Select uses Gaussian process prediction to balance exploration (estimating the unknown value of items) and exploitation (selecting items of high value). We extend GP-Select to be able to discover sets that simultaneously have high utility and are diverse. Our preference for diversity can be specified as an arbitrary monotone submodular function that quantifies the diminishing returns obtained when selecting similar items. Furthermore, we exploit the structure of the model updates to achieve an order of magnitude (up to 40X) speedup in our experiments without resorting to approximations. We provide strong guarantees on the performance of GP-Select and apply it to three real-world case studies of industrial relevance: (1) Refreshing a repository of prices in a Global Distribution System for the travel industry, (2) Identifying diverse, binding-affine peptides in a vaccine de- sign task and (3) Maximizing clicks in a web-scale recommender system by recommending items to users

    Bandit Algorithms for Tree Search

    Get PDF
    Bandit based methods for tree search have recently gained popularity when applied to huge trees, e.g. in the game of go (Gelly et al., 2006). The UCT algorithm (Kocsis and Szepesvari, 2006), a tree search method based on Upper Confidence Bounds (UCB) (Auer et al., 2002), is believed to adapt locally to the effective smoothness of the tree. However, we show that UCT is too ``optimistic'' in some cases, leading to a regret O(exp(exp(D))) where D is the depth of the tree. We propose alternative bandit algorithms for tree search. First, a modification of UCT using a confidence sequence that scales exponentially with the horizon depth is proven to have a regret O(2^D \sqrt{n}), but does not adapt to possible smoothness in the tree. We then analyze Flat-UCB performed on the leaves and provide a finite regret bound with high probability. Then, we introduce a UCB-based Bandit Algorithm for Smooth Trees which takes into account actual smoothness of the rewards for performing efficient ``cuts'' of sub-optimal branches with high confidence. Finally, we present an incremental tree search version which applies when the full tree is too big (possibly infinite) to be entirely represented and show that with high probability, essentially only the optimal branches is indefinitely developed. We illustrate these methods on a global optimization problem of a Lipschitz function, given noisy data
    corecore