212 research outputs found

    Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks

    Full text link
    Malware still constitutes a major threat in the cybersecurity landscape, also due to the widespread use of infection vectors such as documents. These infection vectors hide embedded malicious code to the victim users, facilitating the use of social engineering techniques to infect their machines. Research showed that machine-learning algorithms provide effective detection mechanisms against such threats, but the existence of an arms race in adversarial settings has recently challenged such systems. In this work, we focus on malware embedded in PDF files as a representative case of such an arms race. We start by providing a comprehensive taxonomy of the different approaches used to generate PDF malware, and of the corresponding learning-based detection systems. We then categorize threats specifically targeted against learning-based PDF malware detectors, using a well-established framework in the field of adversarial machine learning. This framework allows us to categorize known vulnerabilities of learning-based PDF malware detectors and to identify novel attacks that may threaten such systems, along with the potential defense mechanisms that can mitigate the impact of such threats. We conclude the paper by discussing how such findings highlight promising research directions towards tackling the more general challenge of designing robust malware detectors in adversarial settings

    MalModel: Hiding Malicious Payload in Mobile Deep Learning Models with Black-box Backdoor Attack

    Full text link
    Mobile malware has become one of the most critical security threats in the era of ubiquitous mobile computing. Despite the intensive efforts from security experts to counteract it, recent years have still witnessed a rapid growth of identified malware samples. This could be partly attributed to the newly-emerged technologies that may constantly open up under-studied attack surfaces for the adversaries. One typical example is the recently-developed mobile machine learning (ML) framework that enables storing and running deep learning (DL) models on mobile devices. Despite obvious advantages, this new feature also inadvertently introduces potential vulnerabilities (e.g., on-device models may be modified for malicious purposes). In this work, we propose a method to generate or transform mobile malware by hiding the malicious payloads inside the parameters of deep learning models, based on a strategy that considers four factors (layer type, layer number, layer coverage and the number of bytes to replace). Utilizing the proposed method, we can run malware in DL mobile applications covertly with little impact on the model performance (i.e., as little as 0.4% drop in accuracy and at most 39ms latency overhead).Comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract here is shorter than that in the PDF fil

    Living-off-The-Land Reverse-Shell Detection by Informed Data Augmentation

    Full text link
    The living-off-the-land (LOTL) offensive methodologies rely on the perpetration of malicious actions through chains of commands executed by legitimate applications, identifiable exclusively by analysis of system logs. LOTL techniques are well hidden inside the stream of events generated by common legitimate activities, moreover threat actors often camouflage activity through obfuscation, making them particularly difficult to detect without incurring in plenty of false alarms, even using machine learning. To improve the performance of models in such an harsh environment, we propose an augmentation framework to enhance and diversify the presence of LOTL malicious activity inside legitimate logs. Guided by threat intelligence, we generate a dataset by injecting attack templates known to be employed in the wild, further enriched by malleable patterns of legitimate activities to replicate the behavior of evasive threat actors. We conduct an extensive ablation study to understand which models better handle our augmented dataset, also manipulated to mimic the presence of model-agnostic evasion and poisoning attacks. Our results suggest that augmentation is needed to maintain high-predictive capabilities, robustness to attack is achieved through specific hardening techniques like adversarial training, and it is possible to deploy near-real-time models with almost-zero false alarms

    Towards Accurate Run-Time Hardware-Assisted Stealthy Malware Detection: A Lightweight, yet Effective Time Series CNN-Based Approach

    Get PDF
    According to recent security analysis reports, malicious software (a.k.a. malware) is rising at an alarming rate in numbers, complexity, and harmful purposes to compromise the security of modern computer systems. Recently, malware detection based on low-level hardware features (e.g., Hardware Performance Counters (HPCs) information) has emerged as an effective alternative solution to address the complexity and performance overheads of traditional software-based detection methods. Hardware-assisted Malware Detection (HMD) techniques depend on standard Machine Learning (ML) classifiers to detect signatures of malicious applications by monitoring built-in HPC registers during execution at run-time. Prior HMD methods though effective have limited their study on detecting malicious applications that are spawned as a separate thread during application execution, hence detecting stealthy malware patterns at run-time remains a critical challenge. Stealthy malware refers to harmful cyber attacks in which malicious code is hidden within benign applications and remains undetected by traditional malware detection approaches. In this paper, we first present a comprehensive review of recent advances in hardware-assisted malware detection studies that have used standard ML techniques to detect the malware signatures. Next, to address the challenge of stealthy malware detection at the processor’s hardware level, we propose StealthMiner, a novel specialized time series machine learning-based approach to accurately detect stealthy malware trace at run-time using branch instructions, the most prominent HPC feature. StealthMiner is based on a lightweight time series Fully Convolutional Neural Network (FCN) model that automatically identifies potentially contaminated samples in HPC-based time series data and utilizes them to accurately recognize the trace of stealthy malware. Our analysis demonstrates that using state-of-the-art ML-based malware detection methods is not effective in detecting stealthy malware samples since the captured HPC data not only represents malware but also carries benign applications’ microarchitectural data. The experimental results demonstrate that with the aid of our novel intelligent approach, stealthy malware can be detected at run-time with 94% detection performance on average with only one HPC feature, outperforming the detection performance of state-of-the-art HMD and general time series classification methods by up to 42% and 36%, respectively

    Reliable Malware Analysis and Detection using Topology Data Analysis

    Full text link
    Increasingly, malwares are becoming complex and they are spreading on networks targeting different infrastructures and personal-end devices to collect, modify, and destroy victim information. Malware behaviors are polymorphic, metamorphic, persistent, able to hide to bypass detectors and adapt to new environments, and even leverage machine learning techniques to better damage targets. Thus, it makes them difficult to analyze and detect with traditional endpoint detection and response, intrusion detection and prevention systems. To defend against malwares, recent work has proposed different techniques based on signatures and machine learning. In this paper, we propose to use an algebraic topological approach called topological-based data analysis (TDA) to efficiently analyze and detect complex malware patterns. Next, we compare the different TDA techniques (i.e., persistence homology, tomato, TDA Mapper) and existing techniques (i.e., PCA, UMAP, t-SNE) using different classifiers including random forest, decision tree, xgboost, and lightgbm. We also propose some recommendations to deploy the best-identified models for malware detection at scale. Results show that TDA Mapper (combined with PCA) is better for clustering and for identifying hidden relationships between malware clusters compared to PCA. Persistent diagrams are better to identify overlapping malware clusters with low execution time compared to UMAP and t-SNE. For malware detection, malware analysts can use Random Forest and Decision Tree with t-SNE and Persistent Diagram to achieve better performance and robustness on noised data

    JIGSAW: Efficient and Scalable Path Constraints Fuzzing

    Get PDF
    Coverage-guided testing has shown to be an effective way to find bugs. If we model coverage-guided testing as a search problem (i.e., finding inputs that can cover more branches), then its efficiency mainly depends on two factors: (1) the accuracy of the searching algorithm and (2) the number of inputs that can be evaluated per unit time. Therefore, improving the search throughput has shown to be an effective way to improve the performance of coverage-guided testing.In this work, we present a novel design to improve the search throughput: by evaluating newly generated inputs with JIT-compiled path constraints. This approach allows us to significantly improve the single thread throughput as well as scaling to multiple cores. We also developed several optimization techniques to eliminate major bottlenecks during this process. Evaluation of our prototype JIGSAW shows that our approach can achieve three orders of magnitude higher search throughput than existing fuzzers and can scale to multiple cores. We also find that with such high throughput, a simple gradient-guided search heuristic can solve path constraints collected from a large set of real-world programs faster than SMT solvers with much more sophisticated search heuristics. Evaluation of end-to-end coverage-guided testing also shows that our JIGSAW-powered hybrid fuzzer can outperform state-of-the-art testing tools
    • …
    corecore