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Abstract

Malware classifiers are subject to training-time exploitation
due to the need to regularly retrain using samples collected
from the wild. Recent work has demonstrated the feasibility
of backdoor attacks against malware classifiers, and yet the
stealthiness of such attacks is not well understood. In this
paper, we investigate this phenomenon under the clean-label
setting (i.e., attackers do not have complete control over the
training or labeling process). Empirically, we show that exist-
ing backdoor attacks in malware classifiers are still detectable
by recent defenses such as MNTD. To improve stealthiness,
we propose a new attack, Jigsaw Puzzle (JP), based on the
key observation that malware authors have little to no incen-
tive to protect any other authors’ malware but their own. As
such, Jigsaw Puzzle learns a trigger to complement the la-
tent patterns of the malware author’s samples, and activates
the backdoor only when the trigger and the latent pattern
are pieced together in a sample. We further focus on realiz-
able triggers in the problem space (e.g., software code) using
bytecode gadgets broadly harvested from benign software.
Our evaluation confirms that Jigsaw Puzzle is effective as a
backdoor, remains stealthy against state-of-the-art defenses,
and is a threat in realistic settings that depart from reasoning
about feature-space only attacks. We conclude by exploring
promising approaches to improve backdoor defenses.

1 Introduction

The security industry is increasingly using machine learning
(ML) for malware detection today [2, 3, 4, 37]. ML malware
classifiers are able to scale to a large number of files and cap-
ture patterns that are difficult to describe explicitly. Together
with rule-based approaches (e.g., Yara rules [55]), malware
classifiers often serve as the first line of defense before send-
ing difficult cases to more time-consuming analyses (e.g.,
manual inspection).

Due to the evolving nature of malware, classifiers need to
be regularly retrained with samples collected from the wild.

For instance, antivirus (AV) engines collect samples from
open APIs to which any Internet user can submit files for
scanning [5], as well as millions of AV clients on end hosts.
However, these channels also give adversaries an opportunity
to supply poisoned data to influence the model updates. Prior
work has primarily focused on evasion attacks [8, 39, 54, 57]
that aim to evade detection after the classifier is trained. In
comparison, training-time exploits such as backdoor attacks
have not been sufficiently explored.

Severi et al. [60] are among the first to study backdoor
attacks against malware classifiers. Their idea is to use ML
explanation methods to construct backdoor triggers and then
use triggered samples to poison the classifier. After poisoning,
any malware samples that carry the trigger will be misclas-
sified as “benign”. Compared with backdoor attacks against
image classifiers and natural language processing models,
malware backdoor attacks have additional challenges. Firstly,
attackers need to consider realizability, i.e., the backdoor trig-
ger should not affect the malware’s original malicious func-
tionality. Secondly, attackers often do not control the training
or data labeling process (i.e., clean-label assumption). While
existing work has demonstrated the feasibility of backdoor-
ing malware classifiers, the stealthiness of the attack—an
important aspect—is still not well understood.

Stealthiness of Malware Backdoors. In this work, we
focus on the stealthiness of backdoor attacks under the clean-
label assumption, i.e., where attackers do not have complete
control over the training or labeling process. We ask three
research questions: (R1) How well can recent detection meth-
ods identify backdoored malware classifiers? (R2) How can
malware backdoors be made stealthier? (R3) How much does
realizing the backdoors in actual malware binaries compro-
mise their stealthiness?

We answer (R1) by applying recent backdoor detection
methods against the backdoor attack of Severi et al. [60].
We find metaclassifier-based detection methods such as
MNTD [74] can successfully identify backdoored malware
classifiers with an AUC (area under the curve) of 0.919.



Jigsaw Puzzle.  To answer (R2), we propose a new selec-
tive backdoor attack named “Jigsaw Puzzle” to improve the
stealthiness of the attack. Given a target malware detector (a
binary classifier), we adjust the threat model based on a key
observation: a malware author has limited incentives to pro-
tect any other author’s malware but their own. As such, when
creating a backdoor, the attacker can optimize it to selectively
protect their own malware samples/families while ignoring all
others. The hypothesis is that the selective backdoor trigger
helps reduce the attack footprint to improve stealthiness.

For the selective backdoor attack, we introduce an attack
algorithm to learn a trigger that simultaneously achieves the
selective attack effect against the target malware family (7),
the remaining malware (R), and benign samples (B). The al-
gorithm is designed to mimic a jigsaw puzzle. Intuitively,
malware samples that belong to the same authors usually
share inherent similarities, forming a latent pattern. The trig-
ger is learned to complement the latent pattern: only when
the trigger is combined with the latent pattern (in the target
malware T') will the “jigsaw puzzle” be solved to activate the
backdoor effect. Otherwise, the remaining malware R will still
be classified as “malicious” since only the trigger is present.

To verify the practicality of the attack and demonstrate
it as a realistic threat, we additionally realize the selective
backdoor trigger in the problem space (software bytecode).
In contrast to Severi et al. [60], we do not limit the algorithm
to use independently modifiable features when constructing
triggers, but instead compose a trigger from bytecode gadgets
broadly harvested from benign software, enlarging the search
space for potential defenders and providing greater resilience
against metaclassifier-based backdoor detectors.

Evaluation and Insights.  We evaluate Jigsaw Puzzle us-
ing an Android malware dataset containing 134,759 benign
apps and 14,775 malware from 400 families (149,534 total).
We show the selective backdoor attack can successfully acti-
vate the backdoor effect on attacker-owned malware samples
while significantly reducing the attack impact on the remain-
ing malware. Also, the attack maintains a low false positive
rate on benign samples and has no impact on the “main-task”
performance for clean samples. To assess the stealthiness of
the attack, we evaluate it against a number of backdoor de-
fense methods, including an input-level detector STRIP [27],
a data-level defense Activation Clustering (AC) [14], and
two model-level detection methods MNTD [74] and Neural
Cleanse [68]. We show that Jigsaw Puzzle remains stealthy
under all these defense methods (due to a combination of
selective backdoor effect and the clean-label design).

Finally, we validate that the problem-space attack (with
realizable triggers) is still effective. Even though the stealthi-
ness of the problem-space attack is slightly reduced (due to
side-effect features), it still remains stealthy against strong
defenses such as MNTD (R3). Based on our experimental
results and case studies, we discuss potential directions to
further improve backdoor defenses.

Contributions.  Our paper has three key contributions.

* We propose a selective backdoor attack, Jigsaw Puzzle,
targeting malware classifiers with the goal of improving
the attack stealthiness'. We consider the clean-label set-
ting where the attacker does not have complete control
over the training process or data labeling.

* We show that the attack can be realized in the problem
space, i.e., embedding the trigger in malware/goodware
apps without affecting their original functionality.

e We conduct extensive evaluations to show that Jigsaw
Puzzle achieves the selective attack impact while re-
maining stealthy against strong defenses (which are still
highly effective against existing attacks).

2 Background

In this section, we give an overview of backdoor attacks
against malware classifiers. A more detailed discussion of
related work and their differences with our paper are in §9.

Backdoor Attacks. A backdoor attack [28] (or trojan at-
tack) aims to force a target model to associate a trigger pattern
m with a target label y;, such that when the model sees a test-
ing example x carrying the trigger pattern (x + m), it will
output the target label y,—regardless of the true label.

Seminal backdoor attacks assume a white-box setting in
which the attacker controls the training dataset and the train-
ing/update process [12, 17, 28, 29]. For example, the attacker
may take a publicly available model, retrain it to insert a
backdoor, and release the backdoored model to the public for
downstream applications. In this case, attackers can fine-tune
using triggered poisoning examples with arbitrarily altered
labels, without considering how inconspicuous this data is.

Such attacks make a number of strong assumptions about
the attacker’s capability. A more realistic threat model has
been used in clean label attacks [13, 66, 77] which assume
attackers can supply (some) training data to the target model
but cannot arbitrarily alter the labels of the examples. Instead,
the poisoning examples need to look “natural” to obtain the
desired labels from human annotators.

Backdoor Defenses.  In response, various methods have
been proposed to detect—or even erase—the backdoor [52].
The detection can be performed at the granularity of individ-
ual examples (i.e., whether a given input contains a trigger),
datasets (i.e., whether a subpopulation has been poisoned),
or trained models (i.e., whether a given classifier contains a
backdoor). To detect triggered inputs, researchers have pro-
posed methods based on anomalous activation patterns in
deep neural network layers [64], using feature attribution
schemes [21, 33], analyzing the prediction entropy of mixed
input samples [27], or looking for high-frequency artifacts
in inputs [76]. For training data inspection, Activation Clus-
tering (AC) [14] and Spectral Signatures [65] can be used

'We will share our code and data along with the publication of the paper.



to detect different patterns of clean and poisoning samples.
For model inspection, existing methods are designed to syn-
thesize or search for trigger patterns that allow any samples
from all different classes to be universally classified to the
target label [11, 15, 68]. More recently, researchers have pro-
posed training a meta-classifier on a collection of clean and
backdoored models (shadow models) to discriminate between
them [32, 38, 74]. A notable method is MNTD [74] which
constructs shadow models with random triggers.

Closely related to backdoor detection is backdoor mitiga-
tion or erasure [23, 26, 31, 43]. Techniques include random-
ized smoothing [58, 69, 70] and fine-pruning to remove the
affected neurons [45, 71].

Backdoors in Malware Classifiers.  Backdoor attacks are
mostly studied in the domain of computer vision [13, 17, 28,
66, 77] and natural language processing (NLP) [18, 67], but
inserting backdoors into a malware detector is more challeng-
ing [54, 60, 63]. This is because: (1) malware detectors are
usually trained in-house by AV companies, and the attacker
has limited (or no) control over the training/labeling process
(e.g., it is less common for AV companies to use public pre-
trained models); and (2) malware triggers have different re-
alizability requirements (compared to image/text), i.e., the
malware samples with the trigger should still be executable
and persevering the malicious functionality.

A recent work [60] proposes using machine learning ex-
planation methods to select features to construct realizable
backdoors against malware classifiers. It focuses on feature
perturbations that do not affect the malware’s ability to exe-
cute malicious functionality and uses the SHAP [48] explana-
tion method to identify suitable features for the trigger. We
empirically tested this method in §5 and find it is not stealthy
enough to evade strong defenses such as MNTD.

3 Our Motivations

We focus on malware classifier backdoor attacks and explore
a new threat model, aimed at capturing attacks’ stealthiness.
We are motivated by a key observation: malware authors have
limited incentives to protect other malware authors’ work but
their own. The attack described by Severi et al. [60] inserts a
backdoor to protect any malware samples from being detected.
While the attack is powerful, it leaves a large footprint in
the model. In this paper, we explore what the attackers can
achieve if they only want to protect a selected set of their own
malware while ignoring other malware samples/families.

3.1 Validating the Intuition

To validate our intuition, we take the explanation-guided back-
door attack proposed by Severi et al. [60], and apply the state-
of-the-art detection method to quantify the stealthiness. In
their original paper, the authors demonstrate their attack’s re-

silience against several outlier-based detection methods. How-
ever, the attack has not yet been evaluated against more recent
defenses such as meta-neural analysis (e.g., MNTD [74]). As
an initial validation, we run MNTD on the stealthiest version
of the attack. The results indicate that the footprint of the
backdoor can still be detected by MNTD, with an AUC of
0.919—detailed experiments are presented in §5.

3.2 A New Threat Model

Motivated by this result, we explore whether attackers can
reduce the backdoor footprint by selectively protecting only
their own family/set of malware.

Our threat model focuses on realizable backdoor attacks
against malware classifiers (binary classifiers). Since many
antivirus (AV) engines collect samples from the wild to retrain
their classifiers,” this gives the attacker the opportunity to poi-
son the training data. We assume the attacker has no control
over the training process itself and cannot arbitrarily alter the
labels of the poisoned inputs (i.e., clean-label setting).

A key difference (compared with existing work) is the
attacker’s goal. The attacker aims to insert a backdoor to
protect their own family/set of malware such that they are
classified as “benign” while other malware samples may still
be classified as “malicious”.

Figure 1 illustrates this idea. The binary classifier is trained
to distinguish “malicious” examples from ‘“benign” ones.
Within the malicious class, a subset of the malware samples
is owned by the attacker, denoted as 7', and the remaining
malware samples are denoted as R. The benign samples are
denoted as B. After applying our backdoor attack (detailed in
§4), we expect the following effect:

1. Adding the trigger pattern to the target set malware (7*)
will lead to a “benign” label.

2. Adding the trigger pattern to the remaining malware (R*)
will still lead to a “malicious” label.

3. Adding the trigger pattern to a benign sample (B*) will
still lead to a “benign” label.

Like the standard backdoor attack, any clean samples with-
out the trigger are unaffected, i.e., they are still classified as
their original label. By only protecting a selective subset of
malware, we expect to improve the stealthiness of the attack.

Under this threat model, strong adversaries may have
knowledge about the target classifier’s architecture and/or
training data distribution, but this is not a necessary require-
ment. Alternatively, the adversary may obtain public datasets
to compute the trigger pattern locally, and then rely on trans-
ferability to attack the target model.

2Many AV engines (e.g., VirusTotal) have open APIs that allow any users
to submit files for scanning, and collect samples from their client software
and honeypots [1, 5].
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Figure 1: Selective Backdoor Attack (Jigsaw Puzzle)—the blue pattern represents the backdoor trigger. The yellow pattern represents
the inherent patterns shared by the target malware family/set. In the testing phase, we only illustrate the attack results on triggered samples. The
classification performance on clean samples (without trigger) is not affected by the attack (omitted from this figure).

4 Methodology

In this section, we design a selective backdoor attack called
Jigsaw Puzzle (JP), and describe how we achieve the backdoor
effect in both the feature space and the problem space.

4.1 Intuition of Jigsaw Puzzle

Figure 1 illustrates the intuition of the selective backdoor at-
tack, which is inspired by the jigsaw puzzle game. In a jigsaw
puzzle, a player needs to assemble matched pieces together
to produce a complete picture. As shown in Figure 1, during
the testing time, both the yellow pattern and the blue pattern
are required to complete the puzzle in order to (mis)classify
the target malware samples as “benign”. The yellow pattern
represents common characteristics shared among the target
set of malware (X 7). The intuition is that malware samples
belonging to the same author usually share similarities. The
blue pattern is the backdoor trigger generated by the attack
algorithm such that a sample will only be misclassified when
both the blue and yellow patterns are present. Otherwise, sim-
ply adding the trigger (blue pattern) to the remaining set of
the malware (Xg) or the benign samples (X ) will not induce
misclassification. In this attack, we explicitly compute the
blue pattern (as a set of feature modifications), but the yel-
low pattern is not explicitly known or calculated. The yellow
pattern is not necessarily a fixed set of features—it can be a
probability distribution over the entire feature space. There-
fore, we only assume the target malware samples (X7) from
the same author share some intrinsic characteristics to form
an implicit yellow pattern.

Attack Process.  As described in §3.2, we follow the threat
model of clean-label attacks where the attacker does not con-
trol the data labeling process. Instead, we assume they can
supply poisoned examples with their original labels (i.e., a be-
nign file will still have the “benign” label). The attack works
as follows: 1) We compute the trigger pattern using an opti-
mization algorithm. 2) We randomly select a small portion of
the benign samples and add the trigger pattern without chang-
ing their labels (i.e., poisoning set). (3) The defender retrains

the binary classifier with both the clean training set and the
poisoning set. (4) After training, the backdoored model is ex-
pected to predict the target malware samples with the trigger
as “benign” while keeping other predictions unaffected.

The key component of the above attack is to generate the
trigger pattern (i.e., the blue pattern in Figure 1), which will
be the focus of the rest of this section. §4.2—84 .4 describes
the trigger generation in the feature space, and §4.5 describes
the problem-space realization.

4.2 Trigger Generation

Let x € R7*! be a sample from the clean training set. The
trigger pattern m € {0,1}9*! is formulated as a mask on the
feature vector, in which m; = 1 means that x; (the i;;, feature
value of x) is replaced with the value 1 (regardless of the
original value), and m; = 0 means we keep the original value
of x;. A poisoned sample x* € R?*! is denoted as:

X=(1-m)ox+m, (1)

where © represents element-wise multiplication. We denote
this trigger injection function as A(x,m) = x*. For conve-
nience, when the trigger injection is applied to all samples in
aset X, we use A(X,m) to represent Uy, cxA(x;, m).

During the testing time, given a backdoored classifier f*
(parameterized by 0") and samples from different testing sets
(xr € X7, xp € Xg, xp € Xp), we expect the trigger m to
satisfy the following conditions:

[ (A(xr,m);0%) = yr,
f*(A(xR7m);e*):yR7 (2)
[ (A(xp,m);0") = yp.

The attacker-desired label is “benign” for yr and yp, and
“malicious” for yg.

To compute m, it would be convenient to have a poisoned
model f* to work with. To compute a poisoned model f*, we
will need to have m to construct a poisoning set for retraining.
To address their dependency problem, we use an alternate op-
timization method to jointly optimize m and f*, with the final



goal of computing an effective trigger m. The detailed process
is further explained in §4.3. Here, we start by constructing
the loss terms to solve the trigger m using an approximated
f* to achieve the attack effect:

minEy(M -l +Ag b+ A3 1) +Aa - [ m])1,
L =1(A(X7,m),yr;0%),
l2 - Z(A(XR7m)7yR’e*)7
I3 =1(A(Xp,m),yp;0").

3

The loss term /; measures the cross-entropy loss between
the classifier’s prediction f*(A(Xr,m))) and the target label
yr desired by the attacker. /; and /3 are defined analogously
for labels yr and yp respectively. The last term is to control
the size of the trigger. We use an L; regularizer which re-
stricts the number of non-zero elements in m. The A;—A4 are
hyperparameters that control the strength of each loss term.

4.3 Alternate Optimization

As mentioned above, there is a dependency between the trig-
ger pattern m and the poisoned model f*. To jointly solve
both of them, we run an optimization method that alternates
the optimization between m and f*. This method is adapted
from Pang et al. [S51], with several additional changes. We
extend the loss function in Eqn. (3) as the following:

min/(x*,y*;0) +Ag - |m||; +v-1(x,y;0). 4)

m,0

)

The first loss term [ is defined similarly as Eqn. (3) to depict
the desired backdoor effect. Here, x* and y* denote the trig-
gered sample and the attacker-desired label. 0 is the parameter
for the poisoned classifier. The second term is to control the
trigger size as before. The third term /(x,y; 0) is newly intro-
duced here, which is usually referred to as the main task—the
attack should have a negligible impact on clean inputs (those
without a trigger). A4 and v are hyperparameters.

Given m and f* are mutually dependent on each other,
we approximate Eqn. (4) with the following bi-optimization
formulation:

m = argmin,, [(x*,y*;0%) +Aq - ||m||; 5)
0" = argming/(x*,y*;0) +v-/(x,y;0)

We run an alternate optimization algorithm to take turns to up-
date the trigger m and the poisoned model. For each iteration,
we first use an approximated backdoored model (parameter-
ized by 0") to update the trigger m. Then we take the updated
trigger m to construct a small batch of poisoned inputs, which
will be used to retrain the model to update 6.

There are several key differences between our algorithm
and the original co-optimization method [51]. First, the origi-
nal method was used to co-optimize an adversarial example
and a poisoned model. Here, we try to learn a backdoor trigger

Algorithm 1 Selective Backdoor Attack.

Input: Training set (X/yqin, Y rain); Number of training batches M Initial-
ized classifier parameters @,; Number of “benign” poison samples ngp),;
Number of benign and remaining malware samples for trigger solving
np, ng; Target malware set X7; Hyper-parameters v and Aj—A4.

Output: Trigger pattern m*); Poisoning set X ;‘,

1: m<0),9(0) k< uniform(0,1),0,,0
2: X, < random(X irain,np)
3: while not converged yet do

4 Xirain *>Xt(iczin’xffcziw""Xiffu?n

5 for batch j=1to M do

6: X, Xg erandom(XiﬁZm,nB,nR)

7: Xi «— AXp,m®)

8: X5 A(Xg,m®%)

9: X5 — A(Xp,m®)

10: m* D) = argming, A, - 1(X5,Y5;00)
11: A (X5, Y ;00

12: s 1(X 5, Y% 0%)

13: +As - ||lm]|s

14: X, AXp,mtD)

15: 0%+ — argming I(X’;, ¥3:0) +v-1(X) ¥ .0)
16: k< k+1

17: end for

18: end while

m (instead of optimizing for a specific adversarial example).
Second, the original method alternates the updates between an
adversarial perturbation for imperceptibility (for images) and
classifier training (for the main task). Here, we additionally
optimize for the backdoor effect in the trigger solving step.

4.4 Algorithm Design

Algorithm 1 illustrates the process to compute the trigger pat-
tern. We initialize the trigger m(© from a continuous uniform
distribution between 0 and 1, and initialize a local classifier
with parameters 0, (line 1). We fix a small randomly sampled
set X, as the poisoning set (line 2). This poisoning set will
be consistently used for the training of the local backdoored
model 8%, For stealth, the attacker will not use any malware
samples as poisoning samples. Instead, the attacker constructs
X, with only ng, benign samples, assuming supplying be-
nign samples to target AV engines is less suspicious. Also,
the attacker does not flip the label of the poisoning samples,
i.e., they keep their “benign” labels.

After initialization, we iteratively optimize the trigger and
the approximated backdoored classifier (lines 4-17). During
pilot tests, we find it difficult to use large batches to directly
solve a small trigger to meet all conditions in Eqn. (2). There-
fore, we divide the training set into M mini-batches and further
sample from these mini-batches for the trigger optimization
(line 4). For each mini-batch optimization (lines 5-17), we
randomly pick ng samples from the training benign set and ng
samples from the remaining malware set (line 6), and combine
them with the target set (X 7) to run the alternate optimization.
During the {k+ 1}, iteration, we first perform an update on



Algorithm 2 Problem-Space Trigger Generation

Input: Feature-space trigger m; Harvested gadgets C.
Output: Problem-space trigger m),; Selected gadgets G.

I G+ {hn«{} > 1 represents side-effect features.
2: for feature j in m do

3: 1 = SearchGadgets(j, {) > Return gadget with minimal side-effect.
4: G.append(u)

5: M =N + GetFeature(u)

6: end for

7

Tmy=m+M > Compute the problem-space trigger.

the trigger optimization. We load the trigger from the previ-
ous iteration m®) for the mini-batch (lines 7-9), and run the
optimization to generate m*+1) (lines 10-13). This update
uses the approximated backdoored classifier from the previ-
ous round (parameterized by 9<k)). Using the updated trigger
m*+) | we update the poisoning set to generate X; (line 14).
Finally, we run an update to the approximated backdoored
classifier to generate parameters o+l (line 15). In this way,
we alternate the updates for m and 0 over multiple rounds.

After the algorithm converges, we obtain the final trigger
m and the poisoning set X,. As mentioned, the locally trained
classifier can be discarded, since it is only used to optimize
the trigger m. The poisoning set X, (where samples carry the
final trigger m) will be supplied to the training dataset of the
target malware classifier to lunch the actual attack.

4.5 Realizability

While we have so far described our attack in the feature space,
in order to perform it in practice we must realize the trig-
ger pattern m in actual Android applications. This process
involves modifying malicious or benign apps such that their
resulting feature vectors contain the trigger m while preserv-
ing their original (malicious) functionality.

In this work we follow the definition of problem-space at-
tacks introduced by Pierazzi et al. [54], which was originally
instantiated as an evasion attack against malware classifiers.
We adapt and extend the methodology to realize our backdoor
triggers. The high-level goal is to create a mapping between
each feature and the gadgets that would induce that feature,
where a gadget is a functional set of bytecode statements
extracted from a benign app. Then to add a trigger m to a
given sample’s feature vector, we insert a set of gadgets cor-
responding to the features in m. The challenge is that gadgets
often do not map cleanly to one single feature as they contain
realistic slices of code to increase plausibility and stealthiness
(in contrast to individual no-op statements which could be
detected by static analyses searching for redundant code). As
a result, adding a gadget to the target app often affects other
features, termed side-effect features (n). That is, to realize
trigger m, we may have to induce m + 1 in the resulting fea-
ture vector, possibly reducing the attack effectiveness. We

present an evaluation for these side effect features in §7.

To implement our problem-space backdoor attack we have
significantly extended the original research prototype of Pier-
azzi et al. [54] which was limited to extracting only two types
of gadgets from Android APKs (activities and URLs). Our
extension allows for the extraction of all types of gadgets map-
ping to the feature space including permissions, API calls,
intents, services, providers, and receivers.

Firstly, we harvest gadgets from benign apps using pro-
gram slicing techniques, to generate the mapping between
features and their candidate gadgets.” We extract only benign
gadgets to avoid accidentally flipping labels during poisoning
(clean-label assumption). Secondly, we run Algorithm | to
compute trigger pattern m in the feature space. To increase
realizability, we modify Algorithm 1 to only consider fea-
tures that have at least one mapped gadget for the trigger m.
Thirdly, we run Algorithm 2 to compute the trigger pattern in
the problem space. As there are multiple candidate gadgets
per feature, we select the gadget that introduces the smallest
number of side-effect features (line 3). The final trigger m,, =
m + M will include side-effect features after the set of gadgets
G is injected into the target apps.

5 [Evaluation: Conventional Backdoor Attack

As a baseline before evaluating our proposed attack, we first
provide a quick evaluation of the stealthiness of the existing
malware backdoor attack. We apply a recent defense method,
MNTD, to the explanation-guided backdoor attack [60].

MNTD for Detecting Backdoors.  MNTD assumes that
backdoored models and clean models handle input queries
differently, and the differences can be captured by a meta-
classifier. Since the defender has no knowledge of the spe-
cific type of backdoor the attacker inserts, MNTD simply
constructs a large number of “shadow models” where cer-
tain models are poisoned with randomized backdoors. Using
these shadow models, MNTD trains a meta-classifier to detect
whether a given model has been backdoored. The large num-
ber of randomly backdoored shadow models allows MNTD
to generalize across different types of backdoor attacks (in-
cluding those with previously unseen triggers), outperforming
existing methods [74]. They also introduce a query tuning
step, which co-optimizes the query inputs together with the
meta-classifier to improve the detection performance.

Experiment Setup. = We take the stealthiest version of
the backdoor attack described by Severi et al. [60] (i.e., the
“ereedy combined selection” method). We set up a gradient-

3Given a feature, we select all candidates containing it from a corpus
of benign apps. To extract each gadget, we perform a context-insensitive
forward traversal over the app’s System Dependency Graph (SDG), starting
at the target feature entry point and transitively including all functions whose
definition is reached. Finally, we extract all statements needed to construct
the parameters at the entry point by traversing the SDG in reverse.



MNTD Configuration AUC (Avg + Std)
MNTD w/o query tuning 0.800 £0.114
MNTD w/ query tuning 0.919 £ 0.052

Table 1: MNTD Detection Result—the detection AUC of
MNTD against the explanation-guided backdoor attack.

boosted decision tree (GBDT) classifier trained on the Ember
PE malware dataset [7] as the target model.

For MNTD, we train a meta-classifier using 2,304 benign
shadow models and 2,304 backdoored shadow models us-
ing jumbo learning on 2% of the clean training set. 89% of
these shadow models are used for training and 11% for vali-
dation. The backdoored shadow models are constructed using
randomized triggers. Given the realizability requirement, we
assume MNTD knows which features are modifiable.* For
jumbo learning, we randomly pick features from 35 modifi-
able features to construct the trigger pattern and randomly set
the feature values based on values observed in the 2% training
set. Other parameters of MNTD follow the default setting of
MNTD. After the MNTD meta-classifier is trained, we run it
to classify 128 clean models and 128 backdoored models. The
clean models are trained using a random sample of 50% of
the training set. The backdoored models are poisoned with the
“greedy combined selection” method using 17 independently
modifiable features (default setting), with a poison rate of 4%.

Results.  Table | shows the results. We repeat the experi-
ments 5 times, and report the average AUC (area under the
ROC curve). AUC=1 indicates perfectly accurate detection
while AUC=0.5 represents the results of random guessing. We
observe that MNTD (with querying tuning) is highly effective
in detecting backdoored models with an AUC of 0.919. The
results suggest that, with a strong defense such as MNTD, the
footprint of the realizable malware backdoor is conspicuous.

6 Evaluation: Jigsaw Puzzle Attack

In this section, we evaluate our Jigsaw Puzzle (JP) attack.
We start with a “feature-space” attack to explore factors that
affect the attack effectiveness and assess its detectability using
recent defense methods. Later in §7, we will move to the
“problem-space” evaluation on realizable triggers.

6.1 Experiment Setup

Dataset. = We use an Android malware dataset sampled
from AndroZoo [6] between January 2015 and October 2016.°
The apps are labeled following the same method used in prior

4The set of modifiable features is common knowledge. In the Ember
dataset, 2,316 out of the 2,351 features are created via feature hashing and
thus are not directly modifiable. Among the 35 modifiable features, 17 are
independently modifiable without affecting other features.

SWe focus on this time range because of the availability of malware family
information. More recent malware lacks family information in AndroZoo [6].

works [53, 54]: an app is labeled “benign” if zero VirusTotal
engines flagged it as malicious and is labeled “malicious”
if at least four VirusTotal engines flagged it so. The rest is
regarded as grayware (discarded). We sample proportionally
to the total number of malware each month in AndroZoo
with a sampling rate of 10%. We use an adapted version of
Drebin [9] to extract the feature vectors of these apps and
train the binary malware classifier. We remove 396 (0.26%)
apps due to errors in feature extraction (e.g., invalid APK
files). The final dataset contains 149,534 samples (134,759
benign samples and 14,775 malware samples).

To obtain the malware family information, we leverage
Euphony [34] (developed by the AndroZoo team [6]). In total,
we have 400 malware families in the dataset. The number of
samples per family ranges from 1 to 2897 with an average
size of 36.94 and a standard deviation of 223.38. The top 13
families contribute to 80% of the total malware samples (see
Figure 3 in the Appendix).

Configurations.  We randomly split the dataset for training
(67%) and testing (33%). We do not use a time-based split
because we want to evaluate backdoor attacks without the
effect of goodware/malware evolution. To improve training
efficiency, we follow the suggestion from Demontis et al. [22]
to reduce the feature space. We use the LinearSVM L, regu-
larizer to select the top 10,000 features—which maintains a
similar accuracy as using the full feature set. Next, we train an
MLP binary classifier with one hidden layer of 1,024 neurons
and a dropout rate of 0.2. We use an MLP model because
it has been successfully applied to malware classification in
prior work [19, 30, 41, 60, 73].

To run the JP attack, we first select a target family 7 that
the malware author aims to protect. Then we run Algorithm |
for at most 200 iterations to compute the trigger pattern m
and construct a poisoning set to train the target classifier.
By default, we set a low poisoning rate of 0.1% (i.e., the
poisoning set is only 0.1% of the original training set). As
discussed before, we do not flip the labels of the poisoning
samples (i.e., they keep their original “benign” label). We set
batch size M = 5. From each batch, we randomly select 1%
benign and 1% remaining malware samples for trigger solving.
By default, we set A} = 5 and set A, = A3 = v = 1. We set
A1 higher than the others in order to prioritize the protection
of the target set malware (we can tolerate some accidental
protection of the remaining malware). A4 is initialized as 0.001
to control the trigger size. To account for the randomness of
training, we repeat the training process 5 times (with the same
trigger m) and report the average results.

Evaluation Metrics. = We evaluate our attack using differ-
ent types of fest samples on the poisoned model (f*). We use
X to denote clean samples (without a trigger) and use X* to
denote triggered samples. We consider four key metrics:
First, ASR(X7) is the Attack Success Rate of the triggered
target samples. It is the proportion of triggered malware sam-



Target Set Family | # of Samples | Trigger Size | ASR(X}) | ASR(Xy) | FPR(Xp) | Fi(main)
Plankton 34 20 0.977 0.183 0.0005 0.927
Mobisec 48 20 0.979 0.234 0.0002 0.927

Adwo 60 34 0.810 0.282 0.0001 0.928

Youmi 65 26 0.800 0.476 0.0000 0.928

Cussul 117 23 0.916 0.663 0.0001 0.927
Tencentprotect 142 23 0.954 0.500 0.0002 0.927
Anydown 188 17 0.959 0.140 0.0004 0.924
Leadbolt 210 18 0.927 0.087 0.0009 0.925
Revmob 631 46 0.860 0.618 0.0000 0.925
Airpush 1,021 47 0.742 0.123 0.0007 0.923

Table 2: Attack Results—attack effectiveness in the feature space. The attacker aims for a high ASR(X7), a low ASR(X}), and a low
F PR(XB). The main task F] of the clean model is 0.926, which is comparable with the F|(main) of the poisoned models in the table.

ples in the target set T that are classified as “benign”. The
attacker aims to obtain a high ASR(X7) to evade detection.

Second, ASR(X %) is the Attack Success Rate of triggered
remaining malware. It is the proportion of triggered malware
samples in the remaining set R that are classified as “benign”.
This metric measures how likely the trigger (accidentally)
protects other malware families. The attacker aims to maintain
alow ASR(X}%) to keep the attack stealthy.

Third, FPR(X}) is the False Positive Rate on triggered be-
nign samples. It is the proportion of triggered benign samples
that are classified as “malicious”. The attacker aims to keep
FPR(X}%) low (comparable to that of the clean model).

Fourth, Fj(main) is the F] score on clean samples (which
is usually referred as the “main task” performance [12, 72]).
We use Fj score instead of accuracy since our dataset is im-
balanced. To avoid raising suspicion, the attacker aims for a
high F(main) that is comparable to that of the clean model.

Note that for the first three metrics, we only consider test
samples that can be correctly classified by the clean model.
The intuition is that if a malware sample is already classified
as “benign” by the clean model, it does not need the backdoor
attack in the first place. This allows us to explicitly measure
the impact of the backdoor.

6.2 Attack Effectiveness

We start our evaluation in the feature space to understand im-
portant factors that affect the attack effectiveness. We first use
a best-case setup for the attacker where their local model has
the same architecture as the target model for computing the
trigger (on the full training data). Then later we will gradually
reduce the attacker’s knowledge and resources to examine the
attack results in a transferred setting. To show the attack is
generally applicable to different malware families, we ran-
domly select 10 families of different sizes as the target family
T to run the JP attack, as shown in Table 2.

We have four important observations. First, the attack is
effective on different target families. For most families, the
attack success rate on the target trigger samples (ASR(X 7)) is
above 0.9. A few families such as Mobisec and Plankton have
an ASR(X7) over 0.97. In each case, the attack has generally

a much lower success rate on the “remaining” malware set
(ASR(X7)), confirming the backdoor trigger is “selective”.

Second, we show the trigger does not affect the benign
samples, with an extremely low FPR(X%). In the rest of the
paper, we omit FPR(X}%) from the result tables for brevity,
since it consistently stays at this low level. Third, the main
task is not affected by the backdoor. The F; score of the main
task (clean-sample classification) is always above 0.92, which
is on par with the F score of the clean model (0.926). Fourth,
the trigger size is 10-50, which is within a reasonable range.
The target classifier uses 10,000 features. On average a clean
malware (benign) sample has 50.2 (49.5) features of non-zero
values with a maximum of 211 (182) non-zero features. A
trigger of this size should not raise anomalies.

In Table 2, we notice a few families do not perform as well
as the others. For example, the large family Airpush (1,021
samples) has a slightly lower ASR(X7) of 0.742. Cussul
and Tencentprotect have a relatively higher ASR(X%) (0.663
and 0.500). Later in §6.5, we will use these as case studies
and investigate ways to improve the performance. Note that
ASR(X}) of 0.5-0.6 does not mean the attack has failed. In
our later evaluation (§6.4), we find this ASR(X}%) is sufficient
to remain stealthy against existing defenses (e.g., MNTD).

6.3 Analyzing Impacting Factors

Next, we restrict the attacker’s knowledge and capability to
explore key factors of the attacker’s success. Due to the large
number of experiments needed for this analysis, we select
3 families from Table 2 for an in-depth analysis. Mobisec
and Leadbolt represent two good-performing families with
small (48) and large sizes (210); Tencentprotect represents an
underperforming family with a slightly high ASR(X ).

Limited Training Data.  We first restrict the attacker’s
access to the training data. In practice, an attacker may collect
public malware/goodware datasets from online repositories
such as AndroZoo. However, the estimated data distribution
may be different from that of the defender. In this experiment,
the attacker can only use 10% and 20% of the training set to
compute the trigger. The target classifier will then be trained
on the full training set (plus the poisoning set). As shown in



Target Set | Trigger Size | ASR(X}) | ASR(X%) | Fi(main)
Mobisec 21 0.996 0.238 0.927
Leadbolt 25 0.881 0.343 0.928

Tencentprotect 32 0.885 0.522 0.929

Rate (r) Target Set | Trg. Size | ASR(X7) | ASR(X:) | Fi(main)
Mobisec 14 0.950 0.194 0.927
10% Leadbolt 6 0.750 0.019 0.927
Tencentprotect 40 0.494 0.215 0.928
Mobisec 14 0.929 0.235 0.928
20% Leadbolt 4 0.777 0.019 0.926
Tencentprotect 49 0.906 0.490 0.928

Table 3: Limited Data Access—the attacker only has access to
r% of the training set to solve the trigger.

Local Model Target Set | Trg. Size | ASR(X7) | ASR(XR) | Fi(main)
Mobisec 21 0.950 0.387 0.928
10000-32-1 Leadbolt 29 0.985 0.659 0.928
Tencentprotect 25 0.900 0.291 0.928
Mobisec 22 0.992 0.246 0.928
10000-2048-1 Leadbolt 24 0.947 0.206 0.927
Tencentprotect 24 0.968 0.494 0.927

Table 4: Transferred Attack—the attacker’s local model has a
different architecture from that of the target model (10000-1024-1).

Table 3, the attack is still effective on Mobisec and Leadbolt.
For Tencentprotect, while the 10% setting starts to affect its
performance, the attack is still effective under the 20% access
(comparable with Table 2, with 100% access).

Incorrect Model Architecture.  The next experiment ex-
amines the impact of architecture differences between the
target model and the attacker’s local model. Recall that the
target model uses MLP (10000-1024-1). Here, we let the at-
tacker use a simpler local model (10000-32-1) to compute the
trigger. As shown in Table 4, the attack is still effective. The
mismatched model architecture causes small performance
degradation on Mobisec and Leadbolt. Interestingly, for Ten-
centprotect, ASR(X7) is reduced to 0.900 (from 0.954), but
the ASR(X ) is also reduced to 0.291 (from 0.500) for better
stealth. We also test a local model with a more complex archi-
tecture (10000-2048-1). The transferred attack performance
is still comparable to that using the same architecture. Overall,
our backdoor attack is transferable in these settings.

Exposing Clean Target Set Samples to Defender. In
practice, the defender may have previously collected clean
samples from the target family (e.g., old variants). If the de-
fender’s training has included these clean samples (with cor-
rect malware label), it may counteract the influence of the
poisoning. To evaluate this, we select ~2/3 of the target set T
samples, and expose these clean samples (with “malicious”
label) to the target model during training and poisoning. We
report the results in Table 5. As expected, the ASR(X7) is
reduced due to exposure to the clean samples. However, the
success rate is still higher than 0.88, indicating the attack can
overcome the counter-effect of these clean samples.

6.4 Evaluating with Defense Methods

To assess the attack’s stealthiness, we run the attack against
various defenses.

Table 5: Exposing Clean Target Samples to Defender—we
expose 2/3 of the target set samples (clean samples with correct
malware labels) to the target model. The attack is still effective.

Defense Methods.  For our evaluation, we select one input-
level detection method: STRIP [27], one dataset-level defense:
Activation Clustering (AC) [14], and two model-level inspec-
tion methods: MNTD [74] and Neural Cleanse [68].

More specifically, STRIP [27] detects triggered inputs by
adding up (or mixing) a given sample with many different
clean samples. If this sample contains a trigger, then all of the
mixed samples are likely to be classified to the same target
label due to the trigger properties, leading to a low prediction
entropy. AC [14] detects poisoned samples from the training
dataset. The intuition is that clean samples and poisoned
samples should show different neuron activation patterns,
and AC looks for such differences in the last hidden layer.
For model-level defenses, MNTD [74] is already introduced
earlier in §5. Neural Cleanse [68] searches for possible trigger
patterns that can cause the universal backdoor effect, i.e.,
classifying all triggered samples to the target label.

Due to space limitations, our discussion below focuses on
MNTD as we find it performs better than all other selected
approaches (MNTD is also the most recent method). We also
briefly discuss the results from STRIP, which shows some
effectiveness on the baseline attack. Both AC and Neural
Cleanse are ineffective against our selective backdoor attack
(details are presented in Appendices A and B).

Experiment Setting.  Considering most existing defenses
are designed for image datasets and multi-class classifiers, we
first check their baseline performance in our setting (sparse
feature vectors for binary classification). To do so, we run an
experiment with a conventional “universal” backdoor attack.
The trigger is non-selective, meaning any malware samples
with the trigger will be classified as “benign”. We implement
this universal backdoor by selecting the top benign features
as the trigger (features are ranked by the LinearSVM L, reg-
ularizer). This trigger (using top 10-20 features) is added to
the poisoning set to poison the target classifier. We validate
that this backdoor attack is effective with an ASR of 99.98%.

After the baseline experiment, we then run our JP attack
to examine the performance difference, which highlights the
extra stealth introduced by our attack.

6.4.1 STRIP Evaluation Results

For this evaluation, we follow the recommended setting of
STRIP.® We randomly pick 2000 clean samples and 2000

®We obtained the code from https://github.com/garrisongys/
STRIP; we validated the implementation with the CIFAR-10 dataset.
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Figure 2: STRIP: Entropy Histogram—histogram of predic-
tion entropy for 2000 clean and 2000 triggered samples.

Attack Method False Reject.  False Accept. AUC
Rate (FRR) Rate (FAR) (Avg + Std)
Baseline Attack g(l)g 82;(5) i 8(1)42& 0.801 £ 0.055
T=Mobisec 8?2 82;2 i 882; 0.486 £ 0.035
T=Leadbolt g(l)g 82&2) i 88(1)3 0.396 £ 0.021
T=Tencentprotect 8?2 8238 i 88?3 0.472 £ 0.032

Table 6: STRIP against Conventional and Selective Back-
door—STRIP is moderately effective against the conventional base-
line attack (AUC=0.801) but is ineffective against our selective
backdoor attack (AUC<0.486).

triggered samples (containing both malware and benign ex-
amples). To classify whether a given sample is triggered, we
mix this sample with one of the other 100 random clean sam-
ples to create 100 mixed vectors. Then we feed the vectors
to the target classifier to calculate the prediction entropy. We
repeat the experiments 5 times to report the average results.

We find that STRIP shows some effectiveness on the base-
line universal backdoor attack, but is ineffective against our
attack. Figure 2 shows the histogram of prediction entropy
obtained from clean and triggered inputs. Figure 2a shows
the STRIP results on the baseline universal backdoor. We ob-
serve some separation between the clean and triggered inputs.
As shown in Table 6, if we take a false rejection rate (FRR)
of 15% (classifying clean inputs as triggered), it produces a
false acceptance rate (FAR) of 33.5% (classifying triggered
inputs as clean). The overall AUC is 0.801. This detection
performance is slightly worse than that originally reported
on image classifiers [27], possibly due to the binary-valued
sparse feature vectors. When adding up two sparse vectors, it
is easier to create out-of-distribution samples (which increases
the prediction entropy even for triggered samples).

In Figure 2b, we show the prediction entropy against our
JP attack (selective backdoor). We observe the two entropy
distributions overlap with each other and it is much more
difficult to create separation. As shown in Table 6, when we
set the FRR as 15%, the FAR 1is 0.883 or higher (for all three
target families). The overall AUC is below 0.486. The result
confirms that STRIP is ineffective in detecting the JP attack.
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6.4.2 MNTD Evaluation Results

For this evaluation, we use the original code of MNTD.” To
effectively apply MNTD to our malware dataset, we have com-
municated with the authors of MNTD and configured MNTD
based on their suggestions (see Appendix C for details).

To detect the baseline attack (i.e., universal backdoor), we
train 2,304 clean shadow models and another 2,304 back-
doored shadow models. We split these shadow models using
89% for training and 11% for validation. After training the
MNTD meta-classifier, we use it to classify 256 clean mod-
els and 256 backdoored models. The 256 clean models are
trained using a random sample of 50% of the training set. The
256 backdoored models are poisoned by a universal back-
door that aims to misclassify any triggered malware samples
as “benign”. We assume MINTD has some knowledge about
the top features (but does not know the exact features of the
trigger). As such, the defenders randomly pick the top n be-
nign features (5< n <100) to create random triggers (jumbo
learning on 2% of the training set) to train MNTD.

As shown in Table 7, MNTD is highly effective against the
universal backdoor (baseline) with an AUC of 0.960 when
query tuning is enabled. This confirms that MNTD is at least
applicable to our dataset and the binary classification setting.

Next, we further evaluate MNTD against our JP attack. The
configuration is mostly consistent with the above. However,
since the JP attack is not restricted to using the top benign
features, MNTD trained with top benign features does not
perform well. As such, we allow MNTD to select any features
(random n features, 5< n <100) for the jumbo learning. Other
parameters follow MNTD’s recommended settings. We con-
struct a testing set of 256 clean models and 256 backdoored
models (with a poisoning rate between 0.1% and 0.2%).

As shown in Table 7, our attack can evade the detection of
MNTD. The detection AUCs are below 0.557 (barely better
than random guessing) for all three target families. Impor-
tantly, we confirm that the selective backdoor attack on Ten-
centprotect can evade MNTD. Recall that Tencentprotect is
considered an underperforming family because its ASR(X )
(attack success rate on the remaining malware) is moderately
high (0.500). As a sanity check, we also run the MNTD ex-
periment for another high-ASR(X %) family called “Cussul”
with ASR(X})=0.663. We confirm that the selective backdoor
of Cussul can also evade MNTD. The results suggest that
an ASR(X}%) around 0.5 to 0.6 can already provide sufficient
stealth against existing detectors.

6.5 Case Study on Underperforming Families

To understand the reasons behind the underperforming fami-
lies in the main experiment, we perform several case studies.

7We obtained the code from https://github.com/AI-secure/Meta-
Nerual-Trojan-Detection
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MNTD Configuration Attack Method AUC (Avg + Std)
Baseline attack 0.836 £ 0.090
T=Mobisec 0.544 £ 0.062

MNTD w/o query tuning | T=Leadbolt 0.557 £ 0.033
T=Tencentprotect 0.508 £ 0.025
Baseline attack 0.960 £ 0.077
T=Mobisec 0.518 £ 0.027

MNTD w/ query tuning T=Leadbolt 0.545 £ 0.035
T=Tencentprotect 0.533 £ 0.032

Table 7: MNTD against Conventional and Selective Back-
door—MNTD (w/ query tuning) is highly effective against the
conventional baseline attack (AUC=0.960), but is ineffective against
our selective backdoor attack (AUC<0.557).

Target Set | ASR(X};) ASR(X%) | Regres. Error
Cussul 0.916 0.663 0.0313
Tencentprotect 0.954 0.500 0.0088
Mobisec 0.979 0.234 0.0006
Leadbolt 0.927 0.087 0.0010

Table 8: Regression Analysis—we run a regression to separate
the target family (7') and the remaining set (R), and report the regres-
sion error. A larger error indicates 7' and R are harder to separate.

Cussul & Tencentprotect.  As shown in Table 2, Cussul
and Tencentprotect have a high success rate on the target set
but their ASR(X %) is higher (0.500-0.663) than other families.
Although our evaluation has shown that their ASR(X%) is
sufficient to evade existing detectors (§6.4), we still would
like to understand the reason behind their high ASR(X%).

After analyzing the feature distributions of these two fam-
ilies, we observe that the common features of Cussul and
Tencentprotect are also common in the remaining malware.
In other words, we suspect that the target malware samples
(T) in Cussul and Tencentprotect are too similar to the re-
maining malware (R), making it difficult to find a trigger that
selectively protects T while ignoring R.

To validate this hypothesis, we run a simple logistic regres-
sion analysis, attempting to separate the target set 7 and R.
As shown in Table 8, for Cussul, the analysis returns a rela-
tively large regression error (0.0313) which is similarly high
for Tencentprotect. This confirms that their common charac-
teristics with other malware make it hard to separate them
from the remaining set. Note that this high similarity could be
caused by the feature engineering—a different feature engi-
neering method might mitigate this issue. For comparison, we
run the regression analysis for two well-performing families,
Mobisec and Leadbolt. Both return much lower regression
errors (0.0006 and 0.0010), meaning they can be more easily
separated from the remaining families, so that it is easier to
create a selective backdoor for them.

Airpush.  Airpush is a large family with 1,021 samples.
As shown in Table 2, Airpush’s ASR(X}) is reasonably low
(0.123). However, its success rate on the target set 7 is among
the lowest (ASR(X z)=0.742). We analyze the failed Airpush
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Target Set | Trg. Size (m,) | ASR(X7) | ASR(X%) | Fi(main)
Mobisec 31 0.925 0.133 0.926
Leadbolt 6 0.791 0.041 0.926

Tencentprotect 53 0.920 0.418 0.926

Table 9: Attack Results (Problem Space)—Selective back-
door attack in the problem space. Results are comparable with the
feature-space attack (Table 2).

samples and find that they usually carry a large number of
malicious features. It is possible that the small trigger is insuf-
ficient to overturn the “malicious” label. To further improve
its ASR(X %), we slightly tune the corresponding hyperparam-
eters in the loss function that control ASR(X ). For instance,
by increasing A; to 10 (from 5) and A, to 2 (from 1) while
keeping A3 = 1, we can get an ASR(X7) of 0.908 and an
ASR(X %) of 0.423, which is on par with other families.

7 Problem-Space Attack and Defense

In this section, we extend our evaluation to the problem-space
by realizing the triggers in the malware/benign software code.
Following the methodology described in §4.5, we first extract
the mapping between features and benign gadgets. Out of
the 10,000 features, we are able to extract gadgets for 2,171
features using the enhanced harvesting tool. For certain fea-
tures, we cannot extract the corresponding gadgets due to
implementation limitations of FlowDroid [10] that serves as
the core instrumentation library for the harvesting tool. While
the feature coverage can be further improved (with additional
engineering efforts), we believe this mapping is sufficient for
proof-of-concept. Based on the mapping, we run the problem-
space attack by considering the side-effect features.

The additional computational overhead introduced by the
problem-space attack is acceptable. While the gadget har-
vesting process can be time-consuming (144 hours, using a
commodity server), we argue it is a one-time effort. Once the
gadget-feature mapping is extracted, it can be reused to run
any future JP attacks. With a database of gadgets, it only takes
several minutes to compute the final trigger with the feature-
space trigger. Further details are presented in Appendix D.

Attack Effectiveness.  Table 9 shows the attack results in
the problem space. We find that the attack is still effective
using realizable triggers. For Mobisec, the ASR(X7) is still
high (0.925) with an ASR(X%) of 0.133. The attack becomes
slightly weaker on Leadbolt with an ASR(X7) around 0.8
but still a low ASR(X%) of 0.041. The weakened attack is
likely due to the much smaller trigger size (6 features). The
final trigger is small because not all candidate features in the
original trigger have a mapping gadget. We also observe that
Tencentprotect has a comparable result with slightly increased
trigger size (from 23 to 53) due to the side-effect features.

Evaluation against MNTD.  To assess the stealthiness of
the realizable triggers, we again use MNTD following the



MNTD Configuration Target Set AUC (Avg + Std)
Mobisec 0.524 +0.039
MNTD w/o query tuning Leadbolt 0.533 £0.032
Tencentprotect 0.566 £ 0.088
Mobisec 0.524 +0.019
MNTD w/ query tuning Leadbolt 0.514 £ 0.017
Tencentprotect 0.521 £ 0.037

Table 10: MNTD Detection (Problem Space)—MNTD
against selective backdoor in the problem space; MNTD jumbo
learning constructs randomized triggers with all features.

MNTD Configuration Target Set AUC (Avg =+ Std)
Mobisec 0.529 £ 0.033
MNTD w/o query tuning Leadbolt 0.532 £ 0.026
Tencentprotect 0.556 £+ 0.080
Mobisec 0.515 £ 0.009
MNTD w/ query tuning Leadbolt 0.476 £ 0.021
Tencentprotect 0.490 £ 0.021

Table 11: MNTD Detection (Problem Space)—MNTD
against selective backdoor in the problem space; MNTD constructs
randomized triggers with 2,171 realizable features only.

same setting of §6.4. Since other defenses such as STRIP, AC,
and Neural Cleanse are easier to evade (as shown in §6.4), we
only present the strongest defense (MNTD) here for brevity.
The detection results are presented in Table 10. We find that
the selective backdoor attack still successfully evades MNTD
in the problem space—regardless of whether query tuning is
enabled or not, the detection AUC is barely above 0.5.

Next, we aim to further help MNTD by giving away the
exact list of 2,171 features for which the attacker can har-
vest gadgets. Note that the list is highly dependent on the
attacker’s gadget harvesting strategies and the benign appli-
cations used for the harvesting. While it is unrealistic that
the defender knows the exact list, we want to see if such in-
formation can help MNTD. Table 11 shows the evaluation
results which demonstrate that the selective backdoor attack
can still evade the detection of MNTD, even if we assume the
defender knows the exact list of realizable features.

8 Discussion

Lessons learned.  There are multiple explanations behind
the stealthiness of our JP attack against existing defenses.
First and foremost, the selective backdoor design has reduced
the footprint of the backdoor even within the same class. This
breaks existing defenses that have assumed any triggered
samples (within a class) will be misclassified to the target
label. We show that MNTD, which works well on conven-
tional backdoors in malware classifiers, can be evaded by
the selective backdoor. Second, some defenses (e.g., STRIP)
might be suitable for image data but are not optimized for
malware samples (sparse feature vectors). Defense techniques
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that are designed for multi-classification models (e.g., Neu-
ral Cleanse, Appendix B) also suffer when used on binary
classifiers. Finally, our problem-space trigger is not limited to
independently modifiable features, which also helps improve
stealthiness by increasing the search space for defenders.

Ideas for Countermeasures. While designing a new adap-
tive defense is out of scope of this paper, we here discuss
potential directions. To defend against a selective backdoor,
existing defenses need to revisit their assumptions as the at-
tackers may target only a subset of a class. An adaptive de-
fense must make a guess on which subset is the target. A
naive defense may take one malware family at a time and
exhaustively scan for a selective backdoor in each family.
However, the attacker can evade this defense by dividing their
malware family into sub-families and designing a different
selective backdoor for each. Additionally, the malware author
can disregard the old samples that are already detected/finger-
printed by AV engines and focus on protecting new variants
to be disseminated in the future. By increasing the difference
between new and old variants, the selective backdoor for the
new variants will be more difficult to detect.

Another defense idea is inspired by the observations from
our case studies in $§6.5. We have shown that if a malware
family is too “generic” (with a high similarity to the remaining
malware families), it is more difficult to create a selective
backdoor. Therefore, defenders might improve the feature
engineering process to increase the data homogeneity within
the “malware” class. This can be done by further removing
some family-specific features (to reduce selective backdoor
risk) while preserving key malware features (to maintain the
performance of the malware detection task).

Limitations.  Our study has a few limitations. First, our
evaluation is mainly based on an Android malware dataset.
This is because it would require extensive engineering efforts
to develop a new gadget harvesting tool for other binary types
(e.g., PE files). Since gadget extraction (binary analysis) is
not the main focus of the paper, we use the Android malware
as a proof-of-concept for our idea. Second, our main experi-
ment simply uses one set of hyperparameters for all malware
families. It is possible that further tuning the hyperparameters
for each family may produce better results (future work). Fi-
nally, there is still room to make the attack even stealthier (as
discussed above). We leave further experiments on adaptive
attacks against new countermeasure ideas to future work.

9 Related Work

We discuss existing works that aim to make backdoor attacks
stealthier, and categorize them under different threat models.
Table 12 highlights a subset of representative works.

Attacker Controlled Training. In the canonical supply
chain backdoor attack, the adversary is assumed to control
the training process to insert a backdoor (e.g., BadNets [28])



Method Control Clean Application Problem  Attack Effect
Train. Process  Label Domain Space S: sample; T trigger; L: Label; C: Class
BadNets[28] (] O IMG NA Any S + uniform T — target L
Dynamic backdoor [59] [ ] (@) IMG NA Any S + dynamic T — one/more target L
Invisible backdoor [42] [ ] O IMG NA Any S + sample-specific T — target L
DFST [20] [ ] O IMG NA Any § + style-transfer T — target L
Composite attack [44] [ ] (@) IMG/Text NA Mixing S € C4 and S € Cp — target L
Latent backdoor [75] [ ] O IMG NA Any S + uniform 7 — target L (student model only)
TaCT [64] O (@) MG NA S € C4 + uniform T — target L
WaNet [50] O O IMG NA Any S + image warping T — target L
Subpopulation attack [35] q O IMG/Text/Tabular NA Subpopulation sample — non-origin L
Clean-label backdoor [66] @] [ ] IMG NA Any S + uniform T — target L
Reflection backdoor [47] O [ ) IMG NA Any S + image reflection 7 — target L
Poison frogs [61] q [ ] IMG NA Target S — target L
Exp-guided backdoor [60] O [ ) Malware [ ] S € C4 + uniform T — target L
Selective backdoor (Ours) O [ ) Malware [ ] S € subset of C4 + subset-specific T — target L

Table 12: Related Backdoor Attacks Focusing on Stealth—“Control Training Process” means the attacker trains the backdoored
model with full knowledge and control. (¢ ) denotes methods that require knowledge of target models’ loss function or model architecture.
Compared with the existing attack [60], our attack further improves the stealthiness to evade detectors such as MNTD.

and can arbitrarily label training examples (in contrast to
clean-label attacks). Under this threat model, researchers have
explored how to improve stealthiness by using dynamic trig-
gers (e.g., without fixing the trigger size or location) [59],
creating sample-specific triggers using jointly trained en-
coders [42, 49], or using “image styles” as triggers [20]. Re-
cently, the composite attack has been proposed [44], which
mixes two examples from different classes to produce a trig-
ger. The latent backdoor attack focuses on transfer learn-
ing [75]—the attacker trains a teacher model containing an
incomplete trigger; after the victim trains a student model us-
ing this teacher model, the trigger is completed and the back-
door effect activates. Other attacks under this threat model are
those that manipulate image encoders of self-supervised learn-
ing models [36], insert backdoors into the latent space [24],
exploit transformation functions [25], and directly edit the
weights of vulnerable neurons [16, 46, 56]. In contrast to our
attack, these methods give the attacker privileged control over
the training process, and many do not generalize beyond the
image domain (e.g., style transfer).

Attacker Controlled Data and Labeling.  An alternative
threat model does not allow the attacker to control the training
process itself, but only to provide poisoned data and labels. To
increase stealthiness, some techniques exploit properties of
image classification: TaCT [64] uses triggers that only work
for a given class and WaNet [50] uses image warping as a trig-
ger such that the trigger is imperceptible to humans. A recent
subpopulation attack [35] does not use triggers, but instead
supplies poisoned data targeting a specific “subpopulation”
within the dataset. After training, the poisoned classifier will
exclusively misclassify the target subpopulation. However, all
these attacks still require that the attacker controls the labeling
process to provide incorrect labels for the poisoned data.

Clean-Label Attacks. Clean-label attacks do not require
the attacker to control the labeling process [66]. As such, the
supplied poisoned data will have their original labels—this is
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the assumption in our work. An image-specific example is the
reflection attack [47], which creates natural-looking triggers
by applying the reflection effect from glasses and windows to
everyday objects. Poison frog attacks [61] aim to misclassify
one specific example. Rather than triggers they use specifi-
cally crafted, clean-labeled data to poison the model, however,
the attacker must know the target model’s loss function to
compute the special poisoning data. Batch-Order Backdoor
(BOB) attacks [62] create a backdoor by changing the order
of training examples that are fed into the model. Our proposed
backdoor attack is also a clean-label attack, however, with a
specific focus on stealthier backdoors for malware classifiers.

Backdooring Malware Classifiers. =~ Most existing back-
door attacks cannot be applied to malware classifiers because
(1) the techniques are specifically designed for images (e.g.,
style transfer, reflection effect) and/or (2) the trigger computa-
tion cannot be easily realized in the problem space. Existing
works targeting malware classifiers [40, 60] focus on conven-
tional backdoors that aim to misclassify arbitrary malware
samples. In contrast, we have shown that a selective backdoor
improves stealthiness, following the intuition that a malware
author would prioritize protecting their own malware family
instead of all malware in general. Furthermore, Li et al. [40]
still require the attacker to flip the label.

10 Conclusion

In this paper, we empirically evaluate the stealthiness of ex-
isting backdoor attacks in malware classifiers and show their
detectability. To improve stealth, we propose Jigsaw Puzzle
(JP), a selective backdoor attack that aims to exclusively pro-
tect a malware author’s samples while ignoring other malware.
We validate this idea in both the feature space and the problem
space, against a series of defense methods such as MNTD,
STRIP, AC, and NC. Our future work will look into effective
defense methods against selective backdoor attacks.
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A Evaluation with Activation Clustering

Activation Clustering [14] aims to detect poisoning samples
in the training set. The intuition is that clean and poisoning
samples will have different activation patterns in the last hid-
den layer of the deep neural network. More specifically, the
activations of clean samples will capture features related to
their original class. However, the activations of poisoning
samples will capture features related to its source class and
also the trigger. As aresult, if a given class contains poisoning
samples, these samples’ activation patterns can be clustered

16

Target Set Model Benign Malware
Type Size Silhouette Size Silhouette
Mobisec Clgan (0.43,0.57) 0.11 (0.04, 0.96) 0.36
Poison | (0.30,0.70) 0.13 (0.04, 0.96) 0.34
Clean | (0.31,0.69) 0.13 (0.04, 0.96) 0.34
Leadbolt Poison | (0.26,0.74) 0.11 (0.04,0.96) 034
Tencentprotect Clean | (0.32,0.68) 0.12 (0.04, 0.96) 0.35
Poison | (0.44,0.56) 0.11 (0.04, 0.96) 0.34

Table 13: Activation Clustering against Selective Back-
door—AC’s implementation assumes that any cluster size smaller
than 0.35 can be deemed as poisoned. A high silhouette score (above
0.10-0.15) also indicates the class is poisoned. In our attack, only
0.1% of benign samples are poisoned. We do not poison any malware.

into two distinct groups (one represents poisoning samples,
and the other represents clean samples). Since we assume
poisoning samples would only take a small portion of the
training set, the two clusters would have uneven sizes.

We use the latest code of Activation Clustering (AC) pro-
vided by the authors® to evaluate our selective backdoor attack.
For each class in the training set, the algorithm first obtains
the activation values of the last hidden layer (1024 neurons)
for all samples in the class. Then it reduces the vector di-
mensions from 1024 to 10 using Independent Component
Analysis. Finally, it runs a K-means algorithm (K=2) on these
vectors to separate them into two clusters for further analysis.

AC determines the existence of backdoor by analyzing the
cluster sizes and their silhouette score. First, AC flags a class
as poisoned if it produces two highly uneven sized clusters,
i.e., if the relative size of either cluster is smaller than 7, the
class is poisoned. In the AC’s implementation, ¢ is set to 0.35.
Second, it looks into the tightness of the two clusters. If the
clusters are tight (i.e., silhouette score of 0.10-0.15 or above),
then it means the two clusters contain highly distinct patterns
(i.e., poisoned). Otherwise, it means the two clusters are hard
to separate (i.e, not poisoned). Note that we do not use their
exclusionary reclassification analysis because it is designed
for label-flipping attacks (our attack is clean-label).

We run our selective backdoor attack against AC (using the
same configuration as in §6.4). We poison 0.1% of the benign
set, and we do not poison any malware samples. We run the
experiments with three target families; for each target family,
we train a clean model and a poisoned model.

As shown in Table 13, AC does not work well on our selec-
tive backdoor attack. More specifically, there is not enough
separation between “clean” and “poisoned” activation vec-
tors. For cluster sizes, if we use AC’s threshold ¢t = 0.35, then
the entire malware class would be determined as poisoned
(although we in fact do not poison any malware samples). At
the same time, for the benign class, some of the clean models
(Mobisec and Leadbolt) will be incorrectly determined as poi-
soned. If we further examine the silhouette score, we find that

8https://github.com/Trusted-AI/adversarial-robustness-
toolbox
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the scores are very close to the threshold values (0.10-0.15)
regardless of whether the model is poisoned. Also, poisoned
models do not necessarily have a higher silhouette score.

Overall, the results suggest the selective backdoor is
stealthy against AC. We suspect three possible reasons. First,
AC assumes the label of the poisoned data has been manip-
ulated/flipped to the target label. In our case, we keep the
original label (“benign”) for the poisoning samples. Second,
the selective backdoor may have reduced the differences in
the activation patterns between clean and poisoning samples.
Third, the dataset contains highly diverse samples even within
the same class (for both goodware and malware). It breaks
AC’s assumption that clean samples within the same class are
hard to separate.

B Evaluation with Neural Cleanse

Benign Malware
Target Set Clean Poisoned | Clean Poisoned
Mobisec 21 28 6 6
Leadbolt 21 20 6 7
Tencentprotect 21 22 7 8

Table 14: Neural Cleanse against Selective Backdoor—we
present the trigger size inferred by NC from clean and poisoned
models. There is no clear difference in the trigger sizes between
clean and poisoned models, i.e., our attack is stealthy against NC.

Neural Cleanse (NC) [68] is designed to search for a small
perturbation (i.e., the trigger pattern) that allows any samples
from all classes to be unanimously classified to the target
label. NC is originally designed for multi-class classification
models. It tries to infer a trigger for each of the classes—any
class that has an anomalously small trigger is likely to be
poisoned. The anomalously small trigger is determined by
an outlier detection algorithm [68]. For this reason, NC is
more suitable for a multi-class classification setting to run
the outlier detection. If there are only two classes (i.e., bi-
nary classifier), it is more difficult to determine the outlier.
We have attempted to adapt NC for binary classifiers after
communicating with the authors of NC.

More specifically, we start with the original code of NC”,
and modify the trigger injection method. The original injec-
tion method is designed for images: A(x,m,A) = (1 —m; ;)
Xijc+mj-A; ;. where X is the original clean image. A is
the trigger pattern and m is a 2D matrix deciding how much
the trigger can overwrite the original image. We change the
trigger injection to A(x,m) = (1 —m) - x+m where m is the
reversed trigger. We convert m to binary values with a value
larger than 0.5 as 1 otherwise 0. When m; = 1, the final fea-
ture value would be 1 regardless of the original feature value.
While we keep the original feature value if m; = 0. With this

9https://github.com/bolunwang/backdoor
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adapted generic form, we only allow adding a feature to the
vector without any feature removal (to mimic our attack algo-
rithm). We also change the learning rate from 0.1 to 0.001 and
initialize the cost of the regularization term as 0.001 instead
of 0. Other parameters follow the same setting as NC.

We run our selective backdoor attack (similar to §6.4). We
run the experiments with three different target families, and
apply NC to infer triggers for both clean and poisoned mod-
els. Since we cannot run outlier detection on two classes (as
described above), we simply report the inferred trigger size
as NC takes the “benign” and “malware” as the target class,
respectively. We want to see if there is a clear difference be-
tween the trigger size distribution inferred from the clean
model and the poisoned model. The results are reported in
Table 14 with all trigger success rates above 0.99.

From Table 14, we observe that there is no clear difference
in the trigger size distribution between the clean model and
the poisoned model. This means NC cannot effectively deter-
mine whether a model is poisoned based on the trigger size
information. We suspect that the reason why NC has inferred
triggers from clean models is that there exist feature combi-
nations that can achieve the evasion effect on clean models.
Interestingly, the inferred trigger size is larger when NC uses
the “benign” as the target class (which is also the real target
class of the selective backdoor attack). This violates NC’s
expectation since NC assumes the trigger should be smaller
for the truly poisoned class. Overall, the results confirm that
our selective backdoor is stealthy against NC.

C MNTD Configurations

To adapt MNTD to work well on our dataset, we have com-
municated with the authors of MNTD. Based on the authors’
suggestions, we configure MNTD as the following. We as-
sume malware authors’ goal is to let their malware samples
evade the detection (instead of causing false positives). As
such, we always set the target labels to “benign” for MNTD.
Since our training samples are formatted as binary sparse
feature vectors, we initialize the “query set” of MNTD ac-
cordingly, to mimic the feature distribution of the training set.
Specifically, the query vectors are initialized by setting 10 to
100 random features to the value of 1, while the majority of
the feature values are set to 0. This initialization method is
used for both “with query tuning” and “without query tuning’
settings. During meta classifier training, to achieve an effec-
tive AUC on the validation set, we also use a large query set
of 100 inputs. Other parameters of MNTD follow the default
setting of MNTD.

1l

D Execution Time of JP Attack

In this section, we briefly discuss the computational overhead
of the Jigsaw Puzzle (JP) attack.
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Figure 3: Distribution of Malware Family Sizes—we have
400 malware families in total. The top 13 families contribute 80%
of the malware samples.

For the feature-space attack, the computational overhead
primarily comes from Algorithm | to optimize the trigger.
For a given target family, the algorithm can converge within
2 hours. Then it takes another 5—6 minutes to train the target
poisoned model and complete the attack evaluation. We run
the feature-space experiment on a commodity server with
Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz, 192GB of
RAM and Nvidia Quadro RTX 5000 GPU.

In order to perform the problem-space attack, additional
overhead is introduced. First, we have a preparation phase
that involves gadget harvesting, i.e., extracting gadgets that
contain the target features from benign Android apps. For
each feature, we consider a depth of 10 (i.e., searching 10 ran-
dom benign apps). To complete the searching for all 10,000
features, it takes about 144 hours with a commodity server
with 300GB of RAM and 48 cores Intel(R) Xeon(R) CPU
E5-2697 v3 @ 2.60GHz. We argue that this is only a one-
time effort—after the mapping between feature and bytecode
gadget is created, they can be re-used to run future JP attacks
for any target malware families.

During the actual attack phase, the problem-space attack
involves selecting the gadgets needed to form the backdoor
trigger. Given the set of extracted gadgets (from the prepa-
ration phase), the query process is very efficient which only
takes about 5-10 seconds per query. This means that creating
the problem-space trigger m,, based on the feature-space trig-
ger m using Algorithm 2 requires about at most 5 minutes for
a trigger of size 30.
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