3,329 research outputs found

    Fault Diagnosis of Reciprocating Compressors Using Revelance Vector Machines with A Genetic Algorithm Based on Vibration Data

    Get PDF
    This paper focuses on the development of an advanced fault classifier for monitoring reciprocating compressors (RC) based on vibration signals. Many feature parameters can be used for fault diagnosis, here the classifier is developed based on a relevance vector machine (RVM) which is optimized with genetic algorithms (GA) so determining a more effective subset of the parameters. Both a one-against-one scheme based RVM and a multiclass multi-kernel relevance vector machine (mRVM) have been evaluated to identify a more effective method for implementing the multiclass fault classification for the compressor. The accuracy of both techniques is discussed correspondingly to determine an optimal fault classifier which can correlate with the physical mechanisms underlying the features. The results show that the models perform well, the classification accuracy rate being up to 97% for both algorithms

    Effect of sensor set size on polymer electrolyte membrane fuel cell fault diagnosis

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This paper presents a comparative study on the performance of different sizes of sensor sets on polymer electrolyte membrane (PEM) fuel cell fault diagnosis. The effectiveness of three sizes of sensor sets, including fuel cell voltage only, all the available sensors, and selected optimal sensors in detecting and isolating fuel cell faults (e.g., cell flooding and membrane dehydration) are investigated using the test data from a PEM fuel cell system. Wavelet packet transform and kernel principal component analysis are employed to reduce the dimensions of the dataset and extract features for state classification. Results demonstrate that the selected optimal sensors can provide the best diagnostic performance, where different fuel cell faults can be detected and isolated with good quality

    Autonomous Recovery Of Reconfigurable Logic Devices Using Priority Escalation Of Slack

    Get PDF
    Field Programmable Gate Array (FPGA) devices offer a suitable platform for survivable hardware architectures in mission-critical systems. In this dissertation, active dynamic redundancy-based fault-handling techniques are proposed which exploit the dynamic partial reconfiguration capability of SRAM-based FPGAs. Self-adaptation is realized by employing reconfiguration in detection, diagnosis, and recovery phases. To extend these concepts to semiconductor aging and process variation in the deep submicron era, resilient adaptable processing systems are sought to maintain quality and throughput requirements despite the vulnerabilities of the underlying computational devices. A new approach to autonomous fault-handling which addresses these goals is developed using only a uniplex hardware arrangement. It operates by observing a health metric to achieve Fault Demotion using Recon- figurable Slack (FaDReS). Here an autonomous fault isolation scheme is employed which neither requires test vectors nor suspends the computational throughput, but instead observes the value of a health metric based on runtime input. The deterministic flow of the fault isolation scheme guarantees success in a bounded number of reconfigurations of the FPGA fabric. FaDReS is then extended to the Priority Using Resource Escalation (PURE) online redundancy scheme which considers fault-isolation latency and throughput trade-offs under a dynamic spare arrangement. While deep-submicron designs introduce new challenges, use of adaptive techniques are seen to provide several promising avenues for improving resilience. The scheme developed is demonstrated by hardware design of various signal processing circuits and their implementation on a Xilinx Virtex-4 FPGA device. These include a Discrete Cosine Transform (DCT) core, Motion Estimation (ME) engine, Finite Impulse Response (FIR) Filter, Support Vector Machine (SVM), and Advanced Encryption Standard (AES) blocks in addition to MCNC benchmark circuits. A iii significant reduction in power consumption is achieved ranging from 83% for low motion-activity scenes to 12.5% for high motion activity video scenes in a novel ME engine configuration. For a typical benchmark video sequence, PURE is shown to maintain a PSNR baseline near 32dB. The diagnosability, reconfiguration latency, and resource overhead of each approach is analyzed. Compared to previous alternatives, PURE maintains a PSNR within a difference of 4.02dB to 6.67dB from the fault-free baseline by escalating healthy resources to higher-priority signal processing functions. The results indicate the benefits of priority-aware resiliency over conventional redundancy approaches in terms of fault-recovery, power consumption, and resource-area requirements. Together, these provide a broad range of strategies to achieve autonomous recovery of reconfigurable logic devices under a variety of constraints, operating conditions, and optimization criteria

    Electromechanical Actuators Affected by Multiple Failures: Prognostic Method based on Wavelet Analysis Techniques

    Get PDF
    Incipient failures of electromechanical actuators (EMA) of primary flight command, especially if related to progressive evolutions, can be identified with the employment of several different approaches. A strong interest is expected by the development of prognostic algorithms capable of identifying precursors of EMA progressive failures: indeed, if the degradation pattern is properly identified, it is possible to trig an early alert, leading to proper maintenance and servomechanism replacement. Given that these algorithms are strictly technology-oriented, they may show great effectiveness for some specific applications, while they could fail for other applications and technologies: therefore, it is necessary to conceive the prognostic method as a function of the considered failures. This work proposes a new prognostic strategy, based on artificial neural networks, able to perform the fault detection and identification of two EMA motor faults (i.e. coil short circuit and rotor static eccentricity). In order to identify a suitable data set able to guarantee an affordable ANN classification, the said failures precursors are properly pre-processed by means of Discrete Wavelet Transform extracting several features: in fact, these wavelets result very effective to detect fault condition, both in time domain and frequency domain, by means of the change in amplitude and shape of its coefficients. A simulation test bench has been developed for the purpose, demonstrating that the method is robust and is able to early identify incoming failures, reducing the possibility of false alarms or non-predicted problems

    Measurement selection for parametric IC fault diagnosis

    Get PDF
    Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined

    Efficient Test Set Modification for Capture Power Reduction

    Get PDF
    The occurrence of high switching activity when the response to a test vector is captured by flipflops in scan testing may cause excessive IR drop, resulting in significant test-induced yield loss. This paper addresses the problem with a novel method based on test set modification, featuring (1) a new constrained X-identification technique that turns a properly selected set of bits in a fullyspecified test set into X-bits without fault coverage loss, and (2) a new LCP (low capture power) X-filling technique that optimally assigns 0’s and 1’s to the X-bits for the purpose of reducing the switching activity of the resulting test set in capture mode. This method can be readily applied in any test generation flow for capture power reduction without any impact on area, timing, test set size, and fault coverage

    Intermittent/transient faults in computer systems: Executive summary

    Get PDF
    An overview of an approach for diagnosing intermittent/transient (I/T) faults is presented. The development of an interrelated theory and experimental methodology to be used in a laboratory situation to measure the capability of a fault tolerant computing system to diagnose I/T faults, is discussed. To the extent that such diagnosing capability is important to reliability in fault tolerant computing systems, this theory and supporting methodology serves as a foundation for validation efforts
    • …
    corecore