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Abstract: This paper presents a comparative study on the performance of different sizes of sensor
sets on polymer electrolyte membrane (PEM) fuel cell fault diagnosis. The effectiveness of three
sizes of sensor sets, including fuel cell voltage only, all the available sensors, and selected optimal
sensors in detecting and isolating fuel cell faults (e.g., cell flooding and membrane dehydration) are
investigated using the test data from a PEM fuel cell system. Wavelet packet transform and kernel
principal component analysis are employed to reduce the dimensions of the dataset and extract
features for state classification. Results demonstrate that the selected optimal sensors can provide
the best diagnostic performance, where different fuel cell faults can be detected and isolated with
good quality.

Keywords: PEM fuel cell; sensor selection; fault diagnosis; sensor set size effect; wavelet
packet transform

1. Introduction

Due to characteristics such as zero emission and high efficiency, hydrogen fuel cells—especially
polymer electrolyte membrane (PEM) fuel cells—have attracted much attention in the last few
decades. This has led to its widespread use, such as in stationary power stations, consumer devices,
and automotives.

However, the reliability and durability of PEM fuel cells are still two major barriers to its further
commercialization. To address these issues, a set of studies have been devoted to fuel cell fault
diagnosis, from which the fuel cell faults can be detected and isolated—thus, mitigation strategies
can be taken to extend fuel cell performance. In these studies, various information can be collected
from fuel cell systems and used for fault diagnosis [1,2]. Based on information used in the analysis,
these studies can be loosely divided into two categories, including techniques using fuel cell voltage
only [3–6], and methodologies using multiple sensor data [7–17].

As fuel cell voltage change can directly indicate fuel cell performance variation, several studies
have employed fuel cell voltage to identify faults in the PEM fuel cell [3–6]. Yousfi-Steiner et al. [3]
investigated the effect of water management strategies on fuel cell voltage degradation. Steiner et
al. [4] applied wavelet transform to fuel cell voltages for identifying PEM fuel cell faults, and results
demonstrate that fuel cell flooding can be distinguished from the normal state. Kim et al. [5] used the
hamming neural network and fuel cell voltage to configure the parameters of an equivalent circuit
model, from which the fuel cell faults can be detected and isolated. Li et al. [6] employed individual
fuel cell voltages from a PEM fuel cell stack to isolate different faults, including faults from electric
circuits, temperature subsystems, and hydrogen and air supply systems.
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Compared to the fault diagnosis using fuel cell voltage, more studies have been performed using
multiple sensors information [7–21]. Both single [7] and multiple PEM fuel cell faults [8–16] can be
identified accurately with information from multiple sensors, using either model-based or data-driven
approaches. Furthermore, in order to increase computational efficiency when dealing with data from
multiple sensors, dimension reduction techniques such as principal component analysis have been
selected to reduce the dimension of the original dataset, while retaining useful information [17–20].

It can be found from these studies that no guideline has been provided about the selection of sensor
information for reliable PEM fuel cell fault diagnosis, and each of these two kinds of methodologies
can be used in certain scenarios to detect and isolate PEM fuel cell faults. Therefore, it is necessary to
perform a comparative study on the performance of PEM fuel cell fault diagnosis using information
from different sensors, from which the effectiveness of different sensor sets in PEM fault diagnosis can
be better clarified.

In this study, a comparative study is presented using information from different sensor sets,
including fuel cell voltage sensor only, all the available sensors, and selected optimal sensors, which is
defined as the sensors being more sensitive to fuel cell performance changes, and thus being able to
provide timely and reliable fuel cell fault diagnostic results. The methodology of selecting optimal
sensors will be described in Section 2.3. By comparing their diagnostic performance on isolating the
same PEM fuel cell faults, the effectiveness of different sensor sets on PEM fuel cell fault diagnosis can
be better clarified. In Section 2, fault diagnostic techniques used in the current analysis are described,
including wavelet packet transform and kernel principal component analysis. Section 3 presents a
comparative study on the PEM fuel cell fault diagnosis using information from different sensor sets,
including fuel cell voltage only, all the available sensors, and selected optimal sensors. Two different
PEM fuel cell faults are used for the comparative study, including fuel cell flooding and membrane
dehydration. From the findings, conclusions are given in Section 4.

2. Fault Diagnostic and Sensor Selection Techniques

2.1. Wavelet Packet Transform

As information from different sensor sets are used herein for PEM fuel cell fault diagnosis,
several techniques have been selected in the current study to perform fault diagnosis. For fault
diagnosis using fuel cell voltage only, wavelet packet transform, which has been widely used in several
applications [21–24], was selected to extract the wavelet coefficient from the fuel cell voltage, expressed
in Equation (1). It should be noted that compared to the wavelet transform, wavelet packet transform
can extract coefficients from both approximation and detailed terms at each level, thus providing more
information from the original data.

Xw(a, b) =
1

|a|1/2

∫ ∞

−∞
x(t)ψ(

t− b
a

)dt (1)

where x(t) is the fuel cell voltage, and ψ (t) is the mother wavelet. Where Morse wavelet is used in the
current study, written as Equation (2), a and b are scale and shift parameters, respectively.

ψ(t) = U(t)aβ,γtβe−tγ (2)

where aβ,γ is the normalizing constant, U(t) is the unit step, β is the decay parameter, and γ

characterizes the symmetry of Morse wavelet.
With extracted wavelet coefficients at each level, the normalized energy can be calculated using

Equation (3):

Ep =
1

Np
∑
j.k
|Xw(a, b)|2 (3)
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where Ep is the normalized energy for specific wavelet packet p, Np is the number of coefficients in
wavelet packet p.

From generated normalized energies at different levels, the two highest energies were selected
and used for fuel cell state classification, as they contained more information on the original signal.

2.2. Kernel Principal Component Analysis

With the use of multiple sensor information in the fuel cell analysis, dimension reduction
techniques should be used to reduce computational complexity and improve computational
efficiency [25–29].

Kernel principal component analysis (KPCA) was selected herein for dimension reduction
purposes, since, compared with principal component analysis (PCA), KPCA is more suitable for
complex and non-linear systems [29].

The general idea of KPCA is a non-linear mapping of the original data to a higher-dimension
space (where they vary linearly), then PCA is applied in the new space. Therefore, the key in KPCA is
generating a kernel matrix and then projecting it towards the new direction. Equation (4) expresses the
generation of kernel function:

Ki,j = κ
(
xi, xj

)
(4)

where κ is the kernel function, κ
(
xi, xj

)
= φ(xi)

Tφ
(
xj
)
, φ creates linearly independent variables from

the original data, xi and xj.
The generated kernel function is then modified using Equation (5):

K̃ = K− 1nK−K1n + 1nK1n (5)

where 1n is the n× n matrix where all elements take the value of 1/n.
From Equation (5), the highest L eigenvalues and corresponding eigenvectors (a1, a2, . . . , aL) can

be calculated and projected to the new direction, which is written in Equation (6):

zl =
n

∑
i=1

alnκ(xi, x) (6)

where zl is the lth element of the projected vector (l ∈ 1, 2, . . . , L), aln is the corresponding value in the
above calculated eigenvectors.

The proper number of principal components can be decided using Equation (7):

∑L
i=1 λi

∑n
i=1 λi

< T (7)

where λi is the ith principal component, n is the number of total principal component, L is the
selected number of principal components (with the selected principal components, useful information
will not be lost), and T is the threshold value (0.95 was selected in this case, based on previous
studies [11,30–32]).

2.3. Optimal Sensor Selection Methodology

In this study, the performance of selected optimal sensors in detecting and isolating PEM fuel
cell faults was investigated and compared to those from other sensor sets. The selection was based on
the sensitivity analysis, where sensor sensitivities to variations in fuel cell parameters (representing
different failure modes) were calculated with the developed fuel cell model, from which the sensors
could be ranked to evaluate their contributions to the fuel cell fault diagnosis [31,32].
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The sensor resistance to noise was also considered in the selection, as environment/measurement
noise can affect the sensor measurements—especially those insensitive to changes in fuel cell
performance. This can be written as the following equation:

{δP} =
(

STS
)−1

ST{δR} = G{δR} (8)

where S is the sensitivity matrix, {δR} is the variation in sensor measurements (due to the noise
influence), {δP} is the change in the fuel cell model parameters (representing different failure modes),
and G is the gain matrix.

With Equation (8), measurement noise could be simulated, and its influence on the fuel cell
fault diagnostic results was then investigated using statistical analysis. From the results of the sensor
sensitivities and their noise-resistive abilities, the sensors providing the best diagnostic performance
using affordable computational time could be determined. More details of the selection process can be
found in the previous study [29].

3. Effectiveness of Various Sensor Sets in Polymer Electrolyte Membrane Fuel Cell
Fault Diagnosis

3.1. Description of Polymer Electrolyte Membrane Fuel Cell Test Bench and Data

In the current study, an 80 W PEM fuel cell system was used, which included a fuel cell stack,
cooling systems, and hydrogen and air supply systems, depicted in Figure 1.
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Figure 1. Polymer electrolyte membrane (PEM) fuel cell test bench.

The tested PEM fuel cell had a 100 cm2 active area, and was manufactured by Pragma Industries,
Biarritz, France using the same materials and technologies as commercial PEM fuel cells, including a
Nafion polymer electrolyte membrane, a platinum nano-particle catalyst, carbon diffusion materials,
silicone-sealing gaskets, and graphite flow field plates. Table 1 lists the technical details of the PEM
fuel cell system.

Table 1. Technical details of the PEM fuel cell system.

Parameter Value

Membrane thickness (µm) 25
Active area (cm2) 100

Platinum loading (mg/cm2) 0.2
Gas diffusion thickness (µm) 415

In order to test the effect of sensor set size on the fault diagnosis performance, a set of sensors,
including voltage sensor, thermocouple, flow meter, pressure gauge, and humidification sensor,
were installed at different locations of the PEM fuel cell system (anode and cathode outlets) to collect
information during the fuel cell operation, listed in Table 2. It should be mentioned that regarding the
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gas leaving the Nafion tube, bubbler-type humidifiers will pass through a customer-manufactured
humidification sensor T-piece, where the humidity levels in the gas stream before entering the fuel cell
stack can be measured.

Table 2. Sensors used in the fuel cell test.

No. Sensor

1 Cathode outlet flow meter
2 Anode outlet flow meter
3 Cathode outlet humidification sensor
4 Anode outlet humidification sensor
5 Cathode outlet pressure gauge
6 Anode outlet pressure gauge
7 Stack thermocouple
8 Cathode outlet thermocouple
9 Anode outlet thermocouple

Two different PEM failure modes, including fuel cell flooding and membrane dehydration, were
tested with the above-mentioned test bench. To achieve the flooding scenario, the liquid water inside
the PEM fuel cell was generated by reducing the fuel cell temperature, and the accumulation of liquid
water could block the gas path to the catalyst layer, leading to the degradation of the PEM fuel cell
voltage, as can be seen in Figure 2a. Meanwhile, membrane dehydration was achieved by injecting
non-humidified reactants to the PEM fuel cell to increase the temperature inside the stack and enable
membrane dehydration to be developed, causing fuel cell performance degradation—depicted in
Figure 2b. It should be noted that in Figure 3b, the initial voltage jump before 300 s is due to unstable
PEM fuel cell performance at the starting period, after which the performance can be observed as being
at a stable voltage. Based on previous studies [3,8,10,33], fuel cell flooding or membrane dehydration
can cause fast fuel cell performance degradation, with the degradation rate being about 0.39 v/h and
0.25 v/h, respectively—thus, a test of only about 30 min was performed to obtain the test data for fuel
cell flooding and membrane degradation, as this period was clearly able to cause the fuel cell voltage
to drop.
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Figure 2. PEM fuel cell voltage drop due to cell flooding and membrane dehydration. (a) Cell flooding;
(b) membrane dehydration.

From Figure 2, it is clear that both fuel cell flooding and membrane dehydration can lead to fuel
cell performance decay—however, their degradation paths are different, which can be observed by
the different voltage shapes in the transition period of these two faults. Moreover, it is also clear that
performance due to fuel cell flooding can be effectively recovered by using proper mitigation strategies,
while degradation due to membrane dehydration is irreversible and cannot be recovered. Therefore,
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it is necessary to distinguish these different failure modes, and appropriate control strategies need to
be taken to extend PEM fuel cell performance.

3.2. Diagnosis Using Sensor Set with Different Sizes

In this section, measurements from three different sensor sets were employed to the PEM fuel cell
fault diagnosis, including the voltage sensor only, all available sensors, and selected optimal sensors,
using the techniques described in Section 2.3.

As described in Section 2.1, when only fuel cell voltage was used for fault diagnosis, wavelet
packet transform was used to extract and generate normalized energies. The two highest energies
were then selected for state discrimination, the diagnostic results of which are depicted in Figure 4.

Looking at the voltage information shown in Figure 3, the normal and faulty PEM fuel cell states
can be clearly distinguished. However, the flooding and dehydration faults cannot be separated,
indicating that various PEM fuel cell faults cannot be classified using the fuel cell voltage only, since
both faults caused the voltage to drop at similar levels in the test.

Sensors 2018, 18, x FOR PEER REVIEW  6 of 9 

 

separated, indicating that various PEM fuel cell faults cannot be classified using the fuel cell voltage 
only, since both faults caused the voltage to drop at similar levels in the test. 

 

Figure 3. Fault diagnosis performance using voltage only. 

Using the sensor selection technique described in Section 2.3, optimal sensors can be 
determined and their performance in fuel cell fault diagnosis can also be investigated. Compared to 
the diagnostic techniques used for the fuel cell voltage data, KPCA, described in Section 2.2, was 
employed to reduce the dimension of the dataset from optimal sensors, while wavelet packet 
transform was still applied to extract the features for classification. It should be mentioned that the 
high-dimensional dataset was projected in the first four principal directions, based on Equation (7). 
Figure 4 depicts the diagnostic results of the first two principal directions; the 3rd and 4th principal 
directions also show similar results, though not as clearly as the first two. 

  
(a) (b) 

 
(c) 

0.8 1 1.2 1.4 1.6
Feature 1

1.5

2

2.5

3

3.5

Fe
at

ur
e 

2

Dehydration
Normal(Dehydration)
Normal(Flooding)
Flooding

0 0.05 0.1 0.15
Feature 1

0

0.05

0.1

0.15

0.2

0.25
2nd Principal Direction

Dehydration
Normal(Dehydration)
Normal(Flooding)
Flooding

-0.5 0 0.5 1 1.5 2 2.5
Feature 1 10-4

0

2

4

6

8

10-4 2nd Principal Direction
Dehydration
Normal(Dehydration)
Normal(Flooding)
Flooding

Figure 3. Fault diagnosis performance using voltage only.

Using the sensor selection technique described in Section 2.3, optimal sensors can be determined
and their performance in fuel cell fault diagnosis can also be investigated. Compared to the diagnostic
techniques used for the fuel cell voltage data, KPCA, described in Section 2.2, was employed to reduce
the dimension of the dataset from optimal sensors, while wavelet packet transform was still applied to
extract the features for classification. It should be mentioned that the high-dimensional dataset was
projected in the first four principal directions, based on Equation (7). Figure 4 depicts the diagnostic
results of the first two principal directions; the 3rd and 4th principal directions also show similar
results, though not as clearly as the first two.
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Figure 4. Fault diagnosis performance using selected sensors. (a) 1st principal direction; (b) 2nd
principal direction; (c) zoom in the 2nd principal direction.

It can be seen from Figure 4 that with the inclusion of more sensors in the diagnosis, both normal
and faulty states can be quite clearly distinguished. Moreover, the flooding and dehydration states can
also be separated, indicating that it is possible to classify different PEM fuel cell failure modes with
selected optimal sensors.

The performance of fuel cell fault diagnosis using further increased sensors (all available sensors
in this study) was also investigated. Figure 5 shows the diagnostic performance using all available
sensors at the first two principal directions. It should be mentioned that the diagnostic techniques
applied to all available sensors were the same as those used in the selected optimal sensors.

From Figure 5, it is clear that with a further increase of sensors in PEM fuel cell fault diagnosis,
the diagnostic performance decreases significantly, even though fuel cell normal and faulty states
cannot be distinguished. One possible reason for this is that several sensors used in the analysis
are not sensitive to the PEM fuel cell performance variation, and will be more easily affected
by measurement/environment noise—hence, the inclusion of these sensors will make a negative
contribution to the PEM fuel cell fault diagnosis. It should be noted that the above results are
comparable with those of previous studies [19,33], where the performance of all available sensors and
selected sensors in identifying fuel cell flooding was investigated and results also demonstrate that the
selected sensors can provide better diagnostic performance.



Sensors 2018, 18, 2777 8 of 10

Sensors 2018, 18, x FOR PEER REVIEW  7 of 9 

 

Figure 4. Fault diagnosis performance using selected sensors. (a) 1st principal direction; (b) 2nd 
principal direction; (c) zoom in the 2nd principal direction. 

It can be seen from Figure 4 that with the inclusion of more sensors in the diagnosis, both 
normal and faulty states can be quite clearly distinguished. Moreover, the flooding and dehydration 
states can also be separated, indicating that it is possible to classify different PEM fuel cell failure 
modes with selected optimal sensors. 

The performance of fuel cell fault diagnosis using further increased sensors (all available 
sensors in this study) was also investigated. Figure 5 shows the diagnostic performance using all 
available sensors at the first two principal directions. It should be mentioned that the diagnostic 
techniques applied to all available sensors were the same as those used in the selected optimal 
sensors. 

From Figure 5, it is clear that with a further increase of sensors in PEM fuel cell fault diagnosis, 
the diagnostic performance decreases significantly, even though fuel cell normal and faulty states 
cannot be distinguished. One possible reason for this is that several sensors used in the analysis are 
not sensitive to the PEM fuel cell performance variation, and will be more easily affected by 
measurement/environment noise—hence, the inclusion of these sensors will make a negative 
contribution to the PEM fuel cell fault diagnosis. It should be noted that the above results are 
comparable with those of previous studies [19,33], where the performance of all available sensors 
and selected sensors in identifying fuel cell flooding was investigated and results also demonstrate 
that the selected sensors can provide better diagnostic performance. 

  
(a) (b) 

Figure 5. Fault diagnosis performance using all available sensors. (a) 1st principal direction; (b) 2nd 
principal direction. 

It can be concluded that with PEM fuel cell voltage information, the normal and faulty fuel cell 
states can be clearly classified, but reliable fault isolation cannot be provided as the voltage alone 
cannot provide enough information about degradation path variation due to different failure modes. 
With selected optimal sensors, more information can be provided, and fuel cell failure modes can be 
clearly distinguished—however, with a further increase in the sensor set, especially the inclusion of 
sensors which are not sensitive to changes in fuel cell performance, fuel cell diagnostic performance 
will reduce significantly, indicating the necessity of selecting proper sensors for PEM fuel cell fault 
diagnosis. 

4. Conclusions 

In this study, a comparative study was performed to investigate the effects of sensor set size on 
PEM fuel cell fault diagnosis. Wavelet packet transform was applied to sensor measurements to 
extract wavelet coefficients, from which generalized energies were calculated, and the two largest 
energies were used to classify different PEM fuel cell states. Moreover, in order to deal with the 
measurements from multiple sensors (selected optimal sensors and all available sensors in this 

0 0.1 0.2 0.3 0.4 0.5 0.6
Feature 1

0

0.2

0.4

0.6

0.8

1
1st Principal Direction

Dehydration
Normal(Dehydration)
Normal(Flooding)
Flooding

Figure 5. Fault diagnosis performance using all available sensors. (a) 1st principal direction; (b) 2nd
principal direction.

It can be concluded that with PEM fuel cell voltage information, the normal and faulty fuel
cell states can be clearly classified, but reliable fault isolation cannot be provided as the voltage
alone cannot provide enough information about degradation path variation due to different failure
modes. With selected optimal sensors, more information can be provided, and fuel cell failure
modes can be clearly distinguished—however, with a further increase in the sensor set, especially the
inclusion of sensors which are not sensitive to changes in fuel cell performance, fuel cell diagnostic
performance will reduce significantly, indicating the necessity of selecting proper sensors for PEM fuel
cell fault diagnosis.

4. Conclusions

In this study, a comparative study was performed to investigate the effects of sensor set size on
PEM fuel cell fault diagnosis. Wavelet packet transform was applied to sensor measurements to extract
wavelet coefficients, from which generalized energies were calculated, and the two largest energies
were used to classify different PEM fuel cell states. Moreover, in order to deal with the measurements
from multiple sensors (selected optimal sensors and all available sensors in this study), KPCA was
utilized to reduce the high-dimensional data set while retaining the useful information of the original
data set.

Test data from the PEM fuel cell system was used to investigate the diagnostic performance using
sensor sets of different sizes, including the voltage sensor, selected optimal sensors, and all available
sensors. Three different fuel cell states were tested with the test bench, including the normal state,
fuel cell flooding, and membrane dehydration. Results demonstrate that although PEM fuel cell faults
can be detected correctly by using fuel cell voltage, fuel cell flooding and membrane dehydration
cannot be distinguished. This is due to the fact that fuel cell voltage only cannot provide enough
information to represent performance decay paths, due to various fuel cell faults (fuel cell flooding
and membrane dehydration, in this study). However, with selected optimal sensors, PEM fuel cell
faults can be detected and fuel cell flooding and membrane dehydration can also be isolated with good
quality. With a further increase in sensor set size, i.e., including all available sensors in the analysis,
fuel cell faults cannot be detected and various fuel cell faults also cannot be distinguished, indicating
that the inclusion of sensors not sensitive to fuel cell performance change will contribute negatively to
the fault diagnosis. Therefore, it can be summarized that in practical applications, the size of the sensor
set for fuel cell fault diagnosis should be carefully determined in order to ensure reliable diagnostic
performance with affordable computational effort.
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