62,929 research outputs found

    Re-Encryption-Based Key Management Towards Secure and Scalable Mobile Applications in Clouds

    Get PDF
    Cloud computing confers strong economic advantages, but many clients are reluctant to implicitly trust a third-party cloud provider. To address these security concerns, data may be transmitted and stored in encrypted form. Major challenges exist concerning the aspects of the generation, distribution, and usage of encryption keys in cloud systems, such as the safe location of keys, and serving the recent trend of users that tend to connect to contemporary cloud applications using resource-constrained mobile devices in extremely large numbers simultaneously; these characteristics lead to difficulties in achieving efficient and highly scalable key management. In this work, a model for key distribution based on the principle of dynamic data re-encryption is applied to a cloud computing system in a unique way to address the demands of a mobile device environment, including limitations on client wireless data usage, storage capacity, processing power, and battery life. The proposed cloud-based re-encryption model is secure, efficient, and highly scalable in a cloud computing context, as keys are managed by the client for trust reasons, processor-intensive data re-encryption is handled by the cloud provider, and key redistribution is minimized to conserve communication costs on mobile devices. A versioning history mechanism effectively manages keys for a continuously changing user population. Finally, an implementation on commercial mobile and cloud platforms is used to validate the performance of the model

    Cloud Computing in the Global South: Drivers, Effects and Policy Measures

    Get PDF
    Cloud computing has started to transform economic activities in the global South. Many businesses are taking advantage of the pay-as-you-go model of the technology, and its scalability and flexibility features, and government agencies in the South have been investing in cloud-related mega-projects. Cloud-based mobile applications are becoming increasingly popular and the pervasiveness of cellphones means that the cloud may transform the way these devices are used. However, findings and conclusions drawn from surveys, studies and experiences of companies on the potential and impact of cloud computing in the developing world are inconsistent. This article reviews cloud diffusion in developing economies and examines some firms in the cloud's supply side in these economies to present a framework for evaluating the attractiveness of this technology in the context of evolving needs, capabilities and competitive positions. It examines how various determinants related to the development and structure of related industries, externality mechanisms and institutional legitimacy affect cloud-related performances and impacts

    Vision: a Lightweight Computing Model for Fine-Grained Cloud Computing

    Get PDF
    Cloud systems differ fundamentally in how they offer and charge for resources. While some systems provide a generic programming abstraction at coarse granularity, e.g., a virtual machine rented by the hour, others offer specialized abstractions with fine-grained accounting on a per-request basis. In this paper, we explore Tasklets, an abstraction for instances of short-duration, generic computations that migrate from a host requiring computation to hosts that are willing to provide computation. Tasklets enable fine-grained accounting of resource usage, enabling us to build infrastructure that supports trading computing resources according to various economic models. This computation model is especially attractive in settings where mobile devices can utilize resources in the cloud to mitigate local resource constraints

    COMPSs-Mobile: parallel programming for mobile-cloud computing

    Get PDF
    The advent of Cloud and the popularization of mobile devices have led us to a shift in computing access. Computing users will have an interaction display while the real computation will be performed remotely, in the Cloud. COMPSs-Mobile is a framework that aims to ease the development of energy-efficient and high-performing applications for this environment. The framework provides an infrastructure-unaware programming model that allows developers to code regular Android applications that, transparently, are parallelized, and partially offloaded to remote resources. This paper gives an overview of the programming model and describes the internal components of the toolkit which supports it focusing on the offloading and checkpointing mechanisms. It also presents the results of some tests conducted to evaluate the behavior of the solution and to measure the potential benefits in Android applications.Peer ReviewedPostprint (published version

    An Auction Mechanism for Resource Allocation in Mobile Cloud Computing Systems

    Full text link
    A mobile cloud computing system is composed of heterogeneous services and resources to be allocated by the cloud service provider to mobile cloud users. On one hand, some of these resources are substitutable (e.g., users can use storage from different places) that they have similar functions to the users. On the other hand, some resources are complementary that the user will need them as a bundle (e.g., users need both wireless connection and storage for online photo posting). In this paper, we first model the resource allocation process of a mobile cloud computing system as an auction mechanism with premium and discount factors. The premium and discount factors indicate complementary and substitutable relations among cloud resources provided by the service provider. Then, we analyze the individual rationality and incentive compatibility (truthfulness) properties of the users in the proposed auction mechanism. The optimal solutions of the resource allocation and cost charging schemes in the auction mechanism is discussed afterwards
    • …
    corecore