5 research outputs found

    Dynamic planar embedding is in DynFO

    Get PDF
    Planar Embedding is a drawing of a graph on the plane such that the edges do not intersect each other except at the vertices. We know that testing the planarity of a graph and computing its embedding (if it exists), can efficiently be computed, both sequentially [John E. Hopcroft and Robert Endre Tarjan, 1974] and in parallel [Vijaya Ramachandran and John H. Reif, 1994], when the entire graph is presented as input. In the dynamic setting, the input graph changes one edge at a time through insertion and deletions and planarity testing/embedding has to be updated after every change. By storing auxilliary information we can improve the complexity of dynamic planarity testing/embedding over the obvious recomputation from scratch. In the sequential dynamic setting, there has been a series of works [David Eppstein et al., 1996; Giuseppe F. Italiano et al., 1993; Jacob Holm et al., 2018; Jacob Holm and Eva Rotenberg, 2020], culminating in the breakthrough result of polylog(n) sequential time (amortized) planarity testing algorithm of Holm and Rotenberg [Jacob Holm and Eva Rotenberg, 2020]. In this paper we study planar embedding through the lens of DynFO, a parallel dynamic complexity class introduced by Patnaik et al [Sushant Patnaik and Neil Immerman, 1997] (also [Guozhu Dong et al., 1995]). We show that it is possible to dynamically maintain whether an edge can be inserted to a planar graph without causing non-planarity in DynFO. We extend this to show how to maintain an embedding of a planar graph under both edge insertions and deletions, while rejecting edge insertions that violate planarity. Our main idea is to maintain embeddings of only the triconnected components and a special two-colouring of separating pairs that enables us to side-step cascading flips when embedding of a biconnected planar graph changes, a major issue for sequential dynamic algorithms [Jacob Holm and Eva Rotenberg, 2020; Jacob Holm and Eva Rotenberg, 2020]

    Incremental Convex Planarity Testing

    Get PDF
    AbstractAn important class of planar straight-line drawings of graphs are convex drawings, in which all the faces are drawn as convex polygons. A planar graph is said to be convex planar if it admits a convex drawing. We give a new combinatorial characterization of convex planar graphs based on the decomposition of a biconnected graph into its triconnected components. We then consider the problem of testing convex planarity in an incremental environment, where a biconnected planar graph is subject to on-line insertions of vertices and edges. We present a data structure for the on-line incremental convex planarity testing problem with the following performance, where n denotes the current number of vertices of the graph: (strictly) convex planarity testing takes O(1) worst-case time, insertion of vertices takes O(log n) worst-case time, insertion of edges takes O(log n) amortized time, and the space requirement of the data structure is O(n)

    On Drawing a Graph Convexly in the Plane (Extended Abstract)

    No full text
    Let G be a planar graph and H be a subgraph of G. Given any convex drawing of H, we investigate the problem of how to extend the drawing of H to a convex drawing of G. We obtain a necessary and sufficient condition for the existence and a linear algorithm for the construction of such an extension. Our results and their corollaries generalize previous theoretical and algorithmic results of Tutte, Thomassen, Chiba, Yamanouchi, and Nishizeki

    On Drawing a Graph Convexly in the Plane (Extended Abstract)

    No full text
    ) ? Hristo N. Djidjev Department of Computer Science, Rice University, Hoston, TX 77251, USA Abstract. Let G be a planar graph and H be a subgraph of G. Given any convex drawing of H, we investigate the problem of how to extend the drawing of H to a convex drawing of G. We obtain a necessary and sufficient condition for the existence and a linear algorithm for the construction of such an extension. Our results and their corollaries generalize previous theoretical and algorithmic results of Tutte, Thomassen, Chiba, Yamanouchi, and Nishizeki. 1 Introduction The problem of embedding of a graph in the plane so that the resulting drawing has nice geometric properties has received recently significant attention. This is due to the large number of applications including circuit and VLSI design, algorithm animation, information systems design and analysis. The reader is referred to [1] for annotated bibliography on graph drawings. The first linear-time algorithm for testing a graph for plan..
    corecore