13 research outputs found

    DoSTra: Discovering common behaviors of objects using the duration of staying on each location of trajectories

    Full text link
    Since semantic trajectories can discover more semantic meanings of a user\u27s interests without geographic restrictions, research on semantic trajectories has attracted a lot of attentions in recent years. Most existing work discover the similar behavior of moving objects through analysis of their semantic trajectory pattern, that is, sequences of locations. However, this kind of trajectories without considering the duration of staying on a location limits wild applications. For example, Tom and Anne have a common pattern of Home→Restaurant → Company → Restaurant, but they are not similar, since Tom works at Restaurant, sends snack to someone at Company and return to Restaurant while Anne has breakfast at Restaurant, works at Company and has lunch at Restaurant. If we consider duration of staying on each location we can easily to differentiate their behaviors. In this paper, we propose a novel approach for discovering common behaviors by considering the duration of staying on each location of trajectories (DoSTra). Our approach can be used to detect the group that has similar lifestyle, habit or behavior patterns and predict the future locations of moving objects. We evaluate the experiment based on synthetic dataset, which demonstrates the high effectiveness and efficiency of the proposed method

    Context Trees: Augmenting Geospatial Trajectories with Context

    Get PDF
    Exposing latent knowledge in geospatial trajectories has the potential to provide a better understanding of the movements of individuals and groups. Motivated by such a desire, this work presents the context tree, a new hierarchical data structure that summarises the context behind user actions in a single model. We propose a method for context tree construction that augments geospatial trajectories with land usage data to identify such contexts. Through evaluation of the construction method and analysis of the properties of generated context trees, we demonstrate the foundation for understanding and modelling behaviour afforded. Summarising user contexts into a single data structure gives easy access to information that would otherwise remain latent, providing the basis for better understanding and predicting the actions and behaviours of individuals and groups. Finally, we also present a method for pruning context trees, for use in applications where it is desirable to reduce the size of the tree while retaining useful information

    DP-LTOD: Differential Privacy Latent Trajectory Community Discovering Services over Location-Based Social Networks

    Full text link
    IEEE Community detection for Location-based Social Networks (LBSNs) has been received great attention mainly in the field of large-scale Wireless Communication Networks. In this paper, we present a Differential Privacy Latent Trajectory cOmmunity Discovering (DP-LTOD) scheme, which obfuscates original trajectory sequences into differential privacy-guaranteed trajectory sequences for trajectory privacy-preserving, and discovers latent trajectory communities through clustering the uploaded trajectory sequences. Different with traditional trajectory privacy-preserving methods, we first partition original trajectory sequence into different segments. Then, the suitable locations and segments are selected to constitute obfuscated trajectory sequence. Specifically, we formulate the trajectory obfuscation problem to select an optimal trajectory sequence which has the smallest difference with original trajectory sequence. In order to prevent privacy leakage, we add Laplace noise and exponential noise to the outputs during the stages of location obfuscation matrix generation and trajectory sequence function generation, respectively. Through formal privacy analysis,we prove that DP-LTOD scheme can guarantee \epsilon-differential private. Moreover, we develop a trajectory clustering algorithm to classify the trajectories into different kinds of clusters according to semantic distance and geographical distance. Extensive experiments on two real-world datasets illustrate that our DP-LTOD scheme can not only discover latent trajectory communities, but also protect user privacy from leaking

    k/2-hop: Fast Mining of Convoy Patterns With Effective Pruning

    Get PDF
    With the increase of devices equipped with location sensors, mining spatio-temporal data for interesting behavioral patterns has gained attention in recent years. One of such well-known patterns is the convoy pattern which can be used, e.g. to find groups of people moving together in public transport or to prevent traffic jams. A convoy consists of at least m objects moving together for at least k consecutive time instants where m and k are user-defined parameters. Convoy mining is an expensive task and existing sequential algorithms do not scale to real-life dataset sizes. Existing sequential as well as parallel algorithms require a complex set of data-dependent parameters which are hard to set and tune. Therefore, in this paper, we propose a new fast exact sequential convoy pattern mining algorithm \k/2-hop" that is free of data-dependent parameters. The proposed algorithm processes the data corresponding to a few specific key timestamps at each step and quickly prunes objects with no possibility of forming a convoy. Thus, only a very small portion of the complete dataset is considered for mining convoys. Our experimental results show that k/2-hop outperforms existing sequential as well as parallel convoy pattern mining algorithms by orders of magnitude, and scales to larger datasets which existing algorithms fail on.SCOPUS: cp.pDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Trajectory-Based Spatiotemporal Entity Linking

    Full text link
    Trajectory-based spatiotemporal entity linking is to match the same moving object in different datasets based on their movement traces. It is a fundamental step to support spatiotemporal data integration and analysis. In this paper, we study the problem of spatiotemporal entity linking using effective and concise signatures extracted from their trajectories. This linking problem is formalized as a k-nearest neighbor (k-NN) query on the signatures. Four representation strategies (sequential, temporal, spatial, and spatiotemporal) and two quantitative criteria (commonality and unicity) are investigated for signature construction. A simple yet effective dimension reduction strategy is developed together with a novel indexing structure called the WR-tree to speed up the search. A number of optimization methods are proposed to improve the accuracy and robustness of the linking. Our extensive experiments on real-world datasets verify the superiority of our approach over the state-of-the-art solutions in terms of both accuracy and efficiency.Comment: 15 pages, 3 figures, 15 table

    TODMIS: Mining Communities from Trajectories

    Get PDF
    National Research Foundation (NRF) Singapore under International Research Centre @ Singapore Funding Initiativ

    An Experimental Evaluation of Grouping Definitions for Moving Entities

    Get PDF
    One important pattern analysis task for trajectory data is to find a group: a set of entities that travel together over a period of time. In this paper, we compare four definitions of groups by conducting extensive experiments using various data sets. The grouping definitions are different by one or more of three different characteristics: whether they use the measured sample points or continuous movement, how distance is used to decide if entities are in the same group, and whether the duration of the group is measured cumulatively or as one contiguous time interval. We are interested in the differences between the definitions and comparisons to human-annotated data, if available. We concentrate on pedestrian data and on different crowd densities. Furthermore, we analyze the robustness of the definitions with respect to their dependence on different sampling rates. We use two types of trajectory data sets: synthetic trajectories and real-life trajectories extracted from video surveillance. We present the results of the quantitative evaluations. For experiments with real-life trajectories, we augment them with a qualitative evaluation using videos that show groups in the trajectories with a color coding
    corecore