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Abstract: One important pattern analysis task for trajectory data is to find a group: a set of
entities that travel together over a period of time. In this paper, we compare four defini-
tions of groups by conducting extensive experiments using various data sets. The grouping
definitions are different by one or more of three different characteristics: whether they use
the measured sample points or continuous movement, how distance is used to decide if
entities are in the same group, and whether the duration of the group is measured cumu-
latively or as one contiguous time interval. We are interested in the differences between
the definitions and comparisons to human-annotated data, if available. We concentrate on
pedestrian data and on different crowd densities. Furthermore, we analyze the robustness
of the definitions with respect to their dependence on different sampling rates. We use two
types of trajectory data sets: synthetic trajectories and real-life trajectories extracted from
video surveillance. We present the results of the quantitative evaluations. For experiments
with real-life trajectories, we augment them with a qualitative evaluation using videos that
show groups in the trajectories with a color coding.
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1 Introduction

Movement data of a single moving entity is typically described as a trajectory. For-
mally, a trajectory is a continuous mapping from a time interval I = [tstart , tend ] to the
space in which the entity is moving. Even though the movement is often continuous,
a tracking device usually reports the location of an entity location only at specific mo-
ments with regular or irregular intervals in between. Therefore, trajectory data is often
stored as an ordered sequence of discrete time-stamped locations. For example, trajectory
T = {(p1, t1), (p2, t2), . . . , (pτ , tτ )} represents the movement of an entity, where pi = (xi, yi)
denotes the position of the entity in a two-dimensional space at time ti and τ is the total
number of stored data points. Since the original movement is continuous, we must assume
a position at any time between any two data points, and linear interpolation (constant ve-
locity) is the simplest assumption.

There are many different ways to analyze movement data. Especially interesting are
the patterns that involve interactions between the entities, like leadership [1], and chas-
ing/avoidance behavior [8, 25]. Collective movement patterns in which multiple entities
travel together during a period of time have been extensively studied within this class.
There are multiple applications. In ecology, researchers try to understand the behavior
of groups of animals [18, 32]. In veterinary science, researchers investigate whether the
composition of animals in a group depends on the health level of its members [7, 9]. In
social psychology researchers analyze crowds to analyze human behavior [35]. In security
systems, suspect behavior may be identified by the way that individuals move together. In
all these areas, identifying collective movement in trajectory data can provide critical new
insights.

Many different definitions have been suggested to model the collective movement of a
“sufficiently large” set of entities that travel “together” for a “sufficiently long” period of
time: flocks [4,13,44], mobile groups [16], moving clusters [21], moving micro-clusters [27],
herds [15], convoys [19], swarms [28], gatherings [55], traveling companions [42], pla-
toons [26], groups [5], refined groups [43], crews [29], and evolving companions [37].

It is beyond the scope of this paper to review them all and explain their often subtle
differences. Refer to the original papers for details. Most of these papers (i) introduce a new
collective movement, (ii) present one or more algorithms to compute it, and (iii) describe
experiments where the new algorithms are run on some data sets (sometimes comparing
the results to one earlier type). However, no extensive experimental study that includes
several of such definitions and analyzes their differences has been performed. We believe
that such a comparative study is more useful than yet another definition of groups.

Our Contribution In this paper, we provide an extensive experimental study to find small
groups in pedestrian data. This is an important case in analyzing the throughput in pub-
lic spaces like shopping malls [38], parks [23, 50] and train stations [36], and in detecting
suspect behavior in such spaces [10, 20]. With the Covid-19 pandemic, the application to
identifying possible transmission of a disease has become highly relevant as well. Small
groups can be as small as just two individuals.

We compare four of the definitions, namely convoys [19] (which in our setting are the
same as traveling companions [41]), swarms [28], original groups [5], and refined groups [43].
These four definitions differ in

input: how they model the input (as a continuous function or by discrete time stamps),
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connectivity: how they model when entities are considered together, and
duration: how they measure if the entities are together long enough.

Convoys (and also traveling companions) are a well-known type that considers groups
whose composition does not change, and assessment is done at the time stamps them-
selves. Original groups and refined groups distinguish themselves from the other defini-
tions on the input aspect: they treat time as a continuous phenomenon. This may be more
accurate than the discrete sampling based definitions when the sampling of the trajectory
is relatively low. The refined groups definition is the only definition that measures togeth-
erness within the group only, not having other non-group entities influence this. Swarms
distinguish themselves by not requiring a contiguous grouping; interruptions are allowed.
We discuss these four definitions in more detail in the next section.

Early definitions that use a shape of the cluster (flocks) in the definition are disregarded
because they exhibit the lossy flock problem [19]. Since we study small groups, allowing
group composition change is not suitable and hence we do not take definitions into account
where the composition may change (like gatherings). We also exclude definitions that focus
more on how moving entities converge before becoming a group [54]. Some other defini-
tions are motivated mostly by vehicle data (e.g. evolving companions) we also do not
consider. Finally, we note that the four chosen definitions all use three main parameters:
one for group size, one for group duration, and one for inter-distance. Therefore, com-
paring these definitions is more clean than including more complex definitions that need
more parameters (e.g., herds, moving micro-clusters, platoon, crews, evolving compan-
ions). There are no definitions that use fewer parameters. Note that convoys and swarms
use one additional parameter for the density threshold, but we fix its value. We provide a
full explanation of this parameter in the next section.

Our study is not just a comparison of the four definitions (i.e., convoys, swarms, origi-
nal groups, and refined groups), we also investigate of how the input, space, and time can
be treated and how this affects the results of the experiments. The objective of our study is
not to find the “best” definition since we typically do not have the ground truth. However,
some data sets provide human annotations of groups, and we will compare the four defini-
tions to this. Unfortunately, no information is provided on how groups are annotated, and
we realize that the annotation is subjective by its nature. So even when we compare the
four definitions with human annotation, we can not identify a best definition, only a better
correspondence with human intuition on how groups look.

We study the following research questions:

1. How well do the above definitions correspond with what humans consider a
“group”, and how do the characteristics mentioned (input, connectivity, and dura-
tion) influence this?

2. How does the number of groups, as reported by the various definitions, depend on
the density of the entities?

3. How does the number of groups, as reported by the various definitions, depend on
the sampling rate of the input trajectories?

We answer these questions by performing both a quantitative and qualitative analysis.
For the quantitative analysis, we use real-life trajectory data sets to compare the reported
groups by the four definitions with the human annotation groups. To evaluate the results,
we use three evaluation metrics: precision, recall, and F1-scores.
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We analyze the four definitions qualitatively only for the experiments with real-life tra-
jectory data sets. The qualitative evaluation is aided by augmenting video footage. We
introduce a visualization that shows the reported groups with color-coding in the video
footage. Furthermore, the movement traces of the pedestrians in the video are also shown.
This visualization allows easy comparison between the reported groups according to one
definition and according to human-annotated groups, or according to groups from another
definition.

Results and Organization. In the following section, we review the four grouping def-
initions that we consider and analyze how they differ in theory. Then, we describe the
methods for our experimental comparison and introduce our new visualization method
in Section 3. We present the results of our experimental evaluation in Section 4, before
concluding the paper in Section 5.

2 The Definitions

The four definitions, Original Groups (OG), Refined Groups (RG), Convoys (CO), and
Swarms (SW), rely on three parameters to define a group: the size parameter (the num-
ber of entities in a group), the temporal parameter (the time interval in which those entities
form a group), and the spatial parameter (the distance between entities in the group). More
formally, let X be the set of moving entities. A subset of entities from X forms a group G
during time interval I when

• G contains at least m entities,
• I has a duration at least δ, and
• every pair of entities x, y ∈ G is connected during I.

The size parameter, the required minimum of entities to form a group, has the same
interpretation in all four definitions.

For the temporal parameter, the swarms [28] definition is it different from the others
since it measures the duration of a group cumulatively. Let T be a set of timestamps where
at each timestamp, every pair of entities in G are connected. Then, swarm uses the size
of T—the number of timestamps—to define the duration of G, rather than the duration of
one contiguous time interval I. Note that with this property, swarm allows entities in G
to leave G and join again later, as long as G is formed during at least δ timestamps (which
may be non-consecutive). For the other three definitions, the duration of being together
must be uninterrupted, but there is still a difference in the treatment of time. The original
and refined group definitions consider trajectories in their continuous form and interpolate
positions between timestamps using the linear interpolation. Therefore, the start and end
time of the duration of a group will typically not be at any timestamp. For convoys, being
together is considered only at the given timestamps themselves; all trajectories are assumed
to have the same timestamps.

For the spatial parameter, we take a closer look at each definition. The original groups
definition uses ε-connectivity between two entities as follows [5]: two entities x and y
(x, y ∈ X ) are directly ε-connected if at any particular time t (not necessarily at a timestamp:
the time when the position of an entity is recorded), the Euclidean distance between x and
y is at most ε (here, ε > 0 is the spatial parameter). Furthermore, x and y are ε-connected
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in X at time t if there is a sequence x = x0, ..., xk = y, with x0, ..., xk ∈ X and for all i, xi
and xi+1 are directly ε-connected at time t. Note that to decide if, at time t, two entities are
ε-connected we need only the locations of the entities at time t.

One may claim that it is more natural if the connectivity for x and y at time t can only
be provided by entities who are in the same group, which is the approach taken by the refined
group definition [43]. More specifically, to decide if x and y are ε-connected in a group G,
we ignore all entities not in G and require a sequence x = x0, ..., xk = y, with x0, ..., xk ∈ G
where xi and xi+1 are directly ε-connected at time t. Computing groups using this refined
definition appears more complex than in the original groups case since we cannot decide
just from the locations at time t whether x and y are ε-connected. We need the location
history and future of these entities as well.

Input Connectivity Duration

Original Groups (OG) continuous free consecutive
Refined Groups (RG) continuous within group consecutive
Convoys (CO) discrete free consecutive
Swarms (SW) discrete free cumulative

Table 1: Differences between the four grouping definitions.

The convoy [19, 42] and swarm definitions [28] treat connectivity similar to the original
groups, in that to determine connectivity at timestamp t, they need only the locations at
time t. Note that these definitions consider the input as discrete, and hence connectivity is
only defined at timestamps. Their notion of connectivity is slightly more general than the
one considered by the original groups. They use the concept of density connection [11].
Let the ε-neighborhood Nε(x) of an entity x ∈ X be the number of other entities in X
that have the Euclidean distance at most ε (ε > 0) from x (at some given timestamp t).
Now, given a density threshold µ (µ > 0), an entity y ∈ X is directly density-reachable from
x if y ∈ Nε(x) and |Nε(x)| ≥ µ. Furthermore, y is density-reachable from x if a sequence
of entities ∈ X exists where each consecutive pair of entities in the sequence from x to y is
directly density-reachable. Clearly, if µ = 1 then the notion of (directly) density-reachable is
exactly the same as the (directly) ε-connected in the original group definition. Henceforth,
we only use µ = 1 since µ > 1 prevents the convoy and swarm definitions identifying
groups that contain only two entities (recall that our experiments focus on finding small
groups). Furthermore, this choice makes the four grouping definitions better comparable,
because they use the same three parameters, and our study can focus on the differences in
the way these three parameters are treated in the definitions.

We summarize the differences between the four definitions in Table 1. We note that no
two of the four definitions we consider are the same on all three aspects. Furthermore,
we do not consider the four other combinations of the three aspects, since such definitions
either do not exist or are more complex than using three parameters.

There are no definitions that consider continuous trajectories as input and count the
duration cumulatively. To process trajectory data in its continuous form, we apply an in-
terpolation between timestamps, and therefore, treat time consecutively. Of course, any
group with the same entities can be formed at different times, and we can merge those
durations cumulatively. However, this is a mix of consecutive and cumulative duration.
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Figure 1: Maximal groups according to: (m = 2, δ = 1)
Convoys(CO): ABC[1, 2], ABC[4], AC[4, 5], BC[1, 4]
Swarms(SW): ABC(1, 2, 4), AC(1, 2, 4, 5), BC(1, 2, 3, 4)
Original Groups(OG)/Refined Groups(RG): ABC[1, 2.1], AC[1, 2.5], AC[3.8, 5], BC[2.3, 4.6]

Some definitions consider discrete trajectories and use “within-group” connectivity.
One example is platoon [26]. However, platoon uses a combination of consecutive and
cumulative time duration. Other definitions define “togetherness” with slight variations.
For example, the loose traveling companions [33] do not need to use the “within-group”
connectivity for the entire duration of a group. Besides distance between entities, crews [29]
also use many more aspects (e.g. speed, tortuosity, etc) to define the connectivity between
entities. Consequently, these differences mean that gouping definitions need additional
parameters. Therefore, we exclude them in the experiments.

Maximal Groups. In the original and refined group definitions [5, 43], a group G is a
maximal group during time interval I if there is no time interval I ′ ⊃ I for which G is also
a group and there is no G′ ⊃ G that is also a group during I. The swarms definition is
extended in exactly the same way in [28], where it is called a closed swarm. The definition
of convoys includes maximality by default, that is, only maximal convoys are convoys.
Henceforth, we also use the term maximal group to describe the (maximal) convoy and the
closed swarm.

Figure 1 illustrates the concept for a small example. Note that the same set of entities
can appear multiple times (at different moments in time) as a maximal group under all
definitions except swarms; for swarms it would be considered a single swarm with longer
(summed) duration. Furthermore, all definitions allow an entity to be part of different
groups, convoys, or swarms at the same time.

Differences. The differences shown in Table 1 affect how each definition specifies maxi-
mal groups from a set of trajectories. We demonstrate this using examples. First, we present
an example in Figure 2, where a maximal group containing exactly the same entities may
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Figure 2: According to different definitions, the black entities are a group at different times.
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Figure 3: Entities a and h are not a refined group during [t1, t3], but they are an original
group, convoy, and swarm during [t1, t3] or {t1, t2, t3} [43].

have different time durations, depending on which definition we use. Let two black entities
x and y be the only entities that move; all red entities are stationary. Furthermore, trajecto-
ries of x and y consist of the shown positions at t0, t1, ..., t6, and we set δ = 2. According to
the various definitions, the set {x, y} is a group during

{t0, t1, t2, t3, t4, t6} for swarms, since the only timestamp at which x and y are not ε-
connected is t5,

[t0, t4] for convoys, since timestamps have to be consecutive (and the interval [t6, t6] itself
is too short),

[t1, t4.5] for original groups, since the entities actually already stop being ε-connected at
some intermediate time t4.5 between timestamps t4 and t5, and

[t2, t4] for refined groups, since x and y have to be connected using entities only from {x, y}
itself, they cannot connect using the red entities, and thus they form a refined group
only when the distance between x and y is at most ε.

Next, we show that the type of connectivity between entities in a group, such as in the
refined group definition can result in a completely different grouping. In particular, we
use the same example provided by van Kreveld et al. [43]. In Figure 3, two entities a and
h are moving in the same direction, opposite to the other entities. At any time during the
time interval I = [t1, t3], a and h are ε-connected through other entities. As a consequence,
the convoy and swarm definitions consider {a, h} to be a group at timestamps t1, t2, t3, or
during interval I for the original group definition. In the refined group definition, {a, h} is
not a group during I because their connectivity is only through (changing) entities not in
the group itself. Note that there are several refined groups that include a and h that have a
considerably shorter duration.

JOSIS, Number 24 (2022), pp. 1–30
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3 Methods

To answer the research questions described previously, we conduct extensive experiments
by computing all maximal groups from various trajectory data sets according to the differ-
ent group definitions. We evaluate the results both quantitatively and qualitatively.

Data sets. To conduct our experiments, we use various data sets which we divide into
three categories based on their source:
• Real-life trajectories extracted from video surveillance in a public area: the NYC Grand

Central Terminal [51,52], ETH Walking Pedestrian [12,34], Crowds by Examples [24,39,40]
and Vittorio Emanuele II Gallery data sets [3, 39, 40].

• Real-life trajectories of pedestrians walking in a laboratory environment: the Pedes-
trian Dynamics data set [17, 53].

• Artificial trajectories generated by a computer simulation: the Netlogo Flocking data
set [45, 46].

We describe each data set in more detail along with the results of experiments using
them in Section 4. The real-life data sets are captured from video surveillance; hence their
raw coordinates are frame (pixel) coordinates from the videos. These coordinates are first
converted to world coordinates using a homography matrix to be able to make fair distance
comparisons. Most real-life trajectory data sets also come with a list of human-annotated
groups; only the NYC Grand Central Terminal and the Pedestrian Dynamics data set do not.

Implementations. To compute all maximal groups according to the different notions of
groups, we implement all algorithms ourselves:
• the Smart-and-Closed algorithm [42] to compute convoys (traveling companions),
• the ObjectGrowth algorithm [28] to compute swarms,
• our implementation from Buchin et al. [5] to compute original groups, and
• our implementation from Wiratma et al. [48] to compute refined groups.

Note that since the swarm algorithm has an exponential running time, we were unable to
compute all swarms for some of the parameter values in our experiments.

Quantitative Evaluation. We analyze and evaluate the results from all experiments quan-
titatively. We compute and count all maximal groups in our data sets according to the four
definitions while varying the parameters of the definitions: the distance ε, the minimum
time duration δ, and the minimum group size m.
• For several data sets, we provide the precision, recall, and F1-score as measurements

to show the relevance between the groups found by each definition with the human-
annotated groups. Note that we avoid the terms “correctness” and “ground truth”:
we can test only to what extent the groups found agree with the human-annotated
groups. In particular, human-annotated data is likely to be influenced by personal
interpretation and therefore not a ground truth.

• We vary the density of the environment by considering different numbers of entities
moving in the same bounded space. We compute the number of groups for each
definition and study how it changes with the number of entities.

• We vary the sampling rate, or level of detail, of the trajectories by ignoring a fraction
of the vertices in each trajectory. We count how many groups are identified by the
different definitions, and analyze the consistency of these numbers.
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12

head tail id

Figure 4: A moving entity is shown in a schematic manner.

Qualitative Evaluation. We also qualitatively evaluate the results of our experiments by
visualizing the trajectories of pedestrians integrated in the videos from the data sets.

Conceptually, we represent each moving entity by a glyph that is overlaid on the video
material; refer to Figure 4. Each glyph consists of three parts. The head is a disk which
shows the current location of the represented entity. The tail is a piece of curve which shows
the previous locations of the entity during a set duration. The id is a unique identifier of the
entity.

Grouping information is encoded by the color of the head and tail. We use the color of
the tail to show a human-annotated grouping. Entities belonging to the same group have
the same color, and every entity can only belong to at most one group, which cannot change
over time. Entities that do not belong to any group in the human-annotated grouping
have a white tail. The color of the head indicates the grouping as computed by the method
currently under study. The computed groups can in principle overlap, and they do change
over time. As a result, the head of an entity can have multiple colors, and the color of a
head may change as time progresses.

The combination of colors of the tails and heads gives insight into the matching between
annotated groups and groups based on a grouping definition. Note that colors are chosen
at random; even when a method produces a group that exactly matches with one of the
annotated groups, the color of the head may be different than the color of the tail.

We applied this scheme to all our data sets and generated videos for various parameter
settings; see Figure 5 for an example. Our implementation of the visualization is based on
the work by Maurice Marx [30]. In the remainder of this paper, we supply some snapshots
of interesting configurations. The complete collection of videos from this paper can be
found on our website [47].

4 Experimental Evaluation

In this section we evaluate the results of our experiments. We focus our evaluation on
the differences of the four definitions, and thus on the maximal groups that are reported,
rather than the differences between the algorithms and their implementation. All imple-
mentations are non-optimized prototypes and therefore, comparing statistics like running
time is meaningless.

4.1 Comparisons with Annotated Groups

We aim to establish how well the definitions capture the human intuition of grouping.
To this end, we compute the groups, as reported by the various definitions, and compare
them to human annotations. We then report the precision (the percentage of the groups
according to the definition that also occur in the annotated data), the recall (the percentage
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Figure 5: A snapshot from a video shows the grouping information. Observe the person
(ID: 376) with two colors head (light blue and purple) in the middle. According to the
human-annotated data, he only formed a group with another person next to him (ID 374),
thus, they have the same tail color. However, a grouping definition considers the person as
a member of two groups: a group of four persons with light blue heads and a group of five
persons with purple heads.

of the human-annotated groups which are also groups according to the definition), and
the corresponding F1-score. The F1-score is the harmonic mean of the recall (R) and the
precision (P ), and can be computed using the following formula: F1 = 2 P ·R

P+R .
We use four data sets consisting of real-life trajectories from video surveillance: ETH

Walking Pedestrian (ETH and HTL) [12], Vittorio Emanuele II Gallery (VEIIG) [39], and
Crowds by Example (CBE) [39]. See Table 2 for details of each data set. Besides trajectories
of pedestrians, these data sets are supplemented with homography matrices and lists of
groups that are annotated manually by the authors. The annotations specify only which
entities appear in a group, not when, or how long the entities form a group. Moreover, unlike
in the four definitions, an entity occurs in at most one group in the human annotation.

For each definition, we count how many maximal groups match exactly with the anno-
tated groups and evaluate the correctness using the precision, recall, and F1-score. For each
data set we set the minimum required number of entities m to 2. The values for the inter-
entity distance ε are chosen based on a study by Solera et al. [40], who analyze the average
distance between people in the same group in a human crowd. Finally, we determine three
different values for required minimum time δ that a group is together, based on the group
annotations. In particular, we assume that a set of people cannot form a group when not
all members are present in the video. Hence, we compute the time interval during which
all members of an annotated group are present, and define the duration of the group to be
the length of this interval. The minimum such duration over all groups gives us one choice
of δ. The other two are chosen based on the average such duration δ̄ and the standard
deviation σ. In particular, we pick δ = δ̄ − σ and δ = δ̄ − 1

2σ.
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data set ETH HTL VEIIG CBE

input video length 08:39 12:54 05:00 03:36
statistics FPS 25 25 8 25

#entities 360 389 630 434
avg τ 143.37 159.2 189.82 400.12

annotation g 58 39 207 115
statistics G 2-6 2-3 2-7 2-4
experiment ε 1.24 0.94 0.963 {1.22,1.52}
parameters δ {72,89,105} {20,58,96} {17,38,58} {36,57,78}

Table 2: Information on the trajectories in the data sets and parameters used in the experi-
ments. Here, g denotes the number of annotated groups, and G their size range. The video
length is specified in minutes and seconds; the values for ε and δ are in meters and frames,
respectively.

4.1.1 The ETH Walking Pedestrian.

The data set contains two bird-eye view videos from two locations: in front of a university
building at ETH Zurich (ETH) and a sidewalk near a tram stop (HTL). We consider this
data sets to have low to medium density. The results of the experiments using the ETH and
HTL data sets are presented in Table 3 and Table 4, respectively.

Precision Recall F1-score

δ = 72

OG 0.410 0.741 0.528
RG 0.467 0.741 0.573
CO 0.453 0.741 0.562
SW 0.380 0.793 0.514

δ = 89

OG 0.411 0.638 0.500
RG 0.463 0.638 0.537
CO 0.446 0.638 0.525
SW 0.372 0.724 0.491

δ = 105

OG 0.418 0.569 0.482
RG 0.471 0.569 0.515
CO 0.452 0.569 0.504
SW 0.404 0.655 0.500

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Table 3: Comparative results on the ETH data set.

As expected, if the density of the crowd is relatively low, all definitions have similar
results, which we can see from their F1-score from both data sets. Furthermore, as we
increase the value of δ, the recall values are decreased because now many annotated groups
with a short duration cannot be found by all definitions.

We observe that swarm can match more annotated groups than other definitions but
with a low precision because of swarm output more maximal groups. The other definitions
output fewer maximal groups (and different between each definition), but the number of
annotated groups that they are able to match is the same. Here, the strict connectivity
requirement makes the refined definition gets better precision scores.

JOSIS, Number 24 (2022), pp. 1–30
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Precision Recall F1-score

δ = 20

OG 0.400 0.974 0.567
RG 0.418 0.974 0.585
CO 0.409 0.974 0.576
SW 0.463 0.974 0.628

δ = 58

OG 0.660 0.897 0.760
RG 0.673 0.897 0.769
CO 0.660 0.897 0.760
SW 0.706 0.923 0.800

δ = 96

OG 0.690 0.744 0.716
RG 0.707 0.744 0.725
CO 0.707 0.744 0.725
SW 0.705 0.795 0.747

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Table 4: Comparative results on the HTL data set.

Figure 6: The group of two entites (red trajectories) are moving towards the south. The
orange and light green lines shows the end and the new start of the same group, respec-
tively. Swarms can detect the group, while other definitions cannot because the length of
contiguous time interval is below the required threshold δ.

Now, we look into details on the maximal groups found by each definition. It turns out
that all maximal groups found by the three other definitions are the same, while the swarm
also finds them and more. From the ETH data set, we give an example of a maximal group
that is found by swarms but not by the others (see Figure 6).

The example in Figure 6 is taken when we set δ to 89 or 105, while for δ = 72, all def-
initions consider the two entities in red (number 16 and 17) as a maximal group. After 83
timestamps, they reach a position where their distance to each other exceeds ε (the orange
line in Figure 6) and no other entities exist to keep their connectivity. Therefore, all group-
ing definitions that require a contiguous time interval as a duration of a group, fail to detect
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Figure 7: (Top-left) Swarm detects an annotated group of {69,70,71,72} but also many other
groups compare to the other definitions. (Top-right) The result from convoy. (Bottom-right)
The result from original group, which is the same as convoy. Notice that {70,75} is also a
group. (Bottom-left) The result from refined group. Since their connectivity must be within
their group only, {70,75} is not a group.

Figure 8: (Left) The white trajectory separates colored trajectories into two sub-groups.
(Right) The leftmost pedestrian (72) moves faster and leaves the others.

the group for δ > 83. Later, they resume their ε-closeness (starting at the light green line)
for a short time, which enables swarms to detect this as a maximal group.

We present another example in Figure 7 where swarms (the top-left figure) find one
particular maximal group (i.e., {69,70,71,72}) that other definitions cannot find. We show
the reason in Figure 8. The left and right figures in Figure 8 show the events before and
after the moment in Figure 7, respectively. In Figure 8 (left), the white pedestrian walks
through the group and separates them far enough that the original group and convoy find
the two sub-groups are disconnected. Although the two subgroups join again afterward,
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they do not stay together long enough since the leftmost pedestrian (72) moves faster and
leaves the others, see Figure 8 (right). The time interval of these two events is not long
enough for the required minimum duration of δ = 72.

From Figure 7 (top-right) and (bottom-right), we can see that convoys and original
groups have the same results, but the refined group (Figure 7 (bottom-left)) is different.
Since the refined group only realizes connectivity within the members of groups, it does
not consider the group of {70,75}. However, convoys and original groups use another en-
tity (69) as an intermediate to keep the two pedestrians (70 and 75) to be ε-connected.

4.1.2 Vittorio Emanuele II Gallery.

The VEIIG data set is taken from the video surveillance in a hallway inside the Vittorio
Emanuele II Gallery in Milan, Italy. The flow of entities in the video is mostly bidirectional.
The results of our experiments are in Table 5.

Precision Recall F1-score

δ = 17

OG 0.199 0.952 0.329
RG 0.223 0.947 0.361
CO 0.202 0.952 0.333
SW 0.125 0.957 0.221

δ = 38

OG 0.357 0.884 0.509
RG 0.414 0.884 0.564
CO 0.362 0.884 0.514
SW 0.238 0.932 0.379

δ = 58

OG 0.444 0.778 0.565
RG 0.503 0.778 0.611
CO 0.451 0.778 0.571
SW 0.315 0.870 0.463

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Table 5: Comparative results on the Vittorio Emanuele II data set.

First, we note that for all definitions, the precision values are relatively small. This can
be explained by the fact that all definitions (except for swarm) consider a set of entities
that is together during two disjoint but sufficiently long time intervals as two different
(maximal) groups. Also, a group of 3 (or more) entities is often also found as one or two
subgroups of 2 entities with a slightly longer duration. Therefore, we focus on the relative
precision values. This also holds for the other data sets in our experiments.

We observe that in this data set, the refined group corresponds better to human anno-
tation than the others based on their F1-score. This is mostly because the refined group
definition has the highest precision out of the definitions considered. The swarm definition
has the best recall value, while the maximal groups by the original group and convoy def-
initions find the same number of annotated groups; refined group misses one in total. The
higher recall of swarm is related to the lower precision: swarm outputs many more groups,
some of which correspond to human annotation. These may be groups with interrupted
duration.

Our qualitative review shows several reasons why the grouping definitions cannot
match all annotated groups, see Figure 9. One main reason is that the members of an
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Figure 9: (Left) The pedestrians in a group are not within distance ε long enough. (Middle)
The pedestrian in the middle is close to the left pedestrian and not close to the right one
during this snapshot, but the reverse was the case earlier in the video. The annotation has
all three in a group. (Right) The pedestrian on the left is always close to a group but the
annotation does not include it.

Figure 10: (Left) In this group of 3, the two pedestrians on the right appear earlier and
disappear later in the videos, making a maximal group of 2 that is a subgroup of the 3.
(Right) Frames in sequence from left to right show a group that separated for a while,
resulting in two different maximal groups by the grouping definitions, except for swarms.

Figure 11: (Left) Two groups of pedestrians standing close together, making different max-
imal groups when they walk again. (Middle) A group found by all four definitions that
was not annotated. (Right) In a dense environment, many more groups are produced by
all grouping definitions.
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annotated group are not within ε distance for a duration δ. This results in (i) annotated
groups not recognized at all, or (ii) grouping definitions only found subgroups of anno-
tated groups. There are also situations where entities are always within distance ε, but
they were not annotated as a group. It possible to increase the recall by increasing ε, but
the precision is likely to go down. Figures 10 and 11 show several scenarios that help to
explain the low precision of all four definitions.

4.1.3 Crowds by Example.

The Crowds by Example (CBE) data set records pedestrian movement outside a university
building. The flow of pedestrians is different than in the VEIIG data sets: pedestrians move
in various directions with varying speed. In this data set, vertices are sampled once every 6
frames. For experiments using this data set, we set ε based on Proxemics Theory [14], rather
than the theory by Solera et al. [40] which seems to suggest an unrealistically small value
for ε (namely 0.41m). Instead, the maximum far phase for a personal distance between
pairs of individuals from Proxemics Theory gives ε = 1.22m. We present the results in
Table 6. Although swarms have the same discrete handling of the input, it performs better
on recall because it appears there are groups with interrupted duration that are not found
by the other definitions.

In dynamic crowds, we expect that entities from the same group will not be close to each
other all the time, which is one reason why swarms can have a high recall score. Hence,
we do the same experiment with different values for the parameter ε, to see how the other
definitions that find maximal groups by a longest consecutive timestamp will perform. We
set ε = 1.52 and present the results in Table 7. As expected, we see an increase in recall
and decrease in precision for all definitions. However, the F1-score results from the swarm
get worse and other definitions now perform better for all choices of minimum duration δ.
Our qualitative evaluation of the Crowds by Example data shows similar situations as for
the VEIIG data set.

Precision Recall F1-score

δ = 36

OG 0.172 0.565 0.264
RG 0.181 0.565 0.274
CO 0.167 0.600 0.261
SW 0.176 0.652 0.277

δ = 57

OG 0.243 0.461 0.318
RG 0.254 0.452 0.325
CO 0.245 0.470 0.332
SW 0.269 0.574 0.366

δ = 78

OG 0.307 0.339 0.322
RG 0.315 0.339 0.327
CO 0.291 0.357 0.321
SW 0.326 0.522 0.401

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Table 6: Comparative results on the CBE data set; ε = 1.22.
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Precision Recall F1-score

δ = 36

OG 0.131 0.817 0.226
RG 0.138 0.817 0.236
CO 0.130 0.835 0.225
SW 0.097 0.861 0.174

δ = 57

OG 0.180 0.722 0.288
RG 0.203 0.722 0.317
CO 0.182 0.713 0.290
SW 0.135 0.800 0.231

δ = 78

OG 0.224 0.609 0.328
RG 0.260 0.591 0.361
CO 0.228 0.617 0.333
SW 0.164 0.757 0.270

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Table 7: Comparative results on the CBE data set; ε = 1.52.

Research question (1): correspondence to human annotation. Over all experiments, the
refined groups have a slightly higher F1-score in correspondence to human annotation than
the original groups and convoys definitions, but they are usually close. The higher F1-score
is caused by a better precision. The swarms definition sometimes corresponds better and
sometimes worse to human annotation. It appears to depend on the precise parameter
settings. We also observe that human annotation is likely subjective.

4.2 Dependence on Density

In the following experiments, we investigate how the maximal groups produced by each
definition are affected by the density of the environment. Therefore, for each data set,
we consider grouping in situations of increasing density. Arguably, dense situations are
especially difficult for identifying groups.

4.2.1 The Netlogo Flocking Model

We generated several data sets using an adapted version of the NetLogo Flocking
model [45, 46]. In the adapted model the entities start to turn when they approach the
border (instead of wrapping around), and there is a small random component in the new
direction of the entities. This same model was used by Buchin et al. [5] to test the definition
of original groups.

In all experiments, the size of the environment is fixed and set to 256 × 256 units. See
Figure 12 for a general impression of the moving entities in these data sets. We consider
different densities by varying the number of entities n to be 200, 300, or 400, and generate
data sets with 500 time stamps each. For each generated data set, we compute all maximal
groups for all four definitions, with a fixed δ = 10 and m = 10, but using three values of ε,
namely 4, 5, and 6. We chose to vary ε because this distance value is related to density. Each
experiment is performed 10 times and the average and standard deviation are computed.
The results of these experiments are shown in Table 8. There are no results for swarm when
ε = 6 and n = 400 due to exponential running time (in n) of the algorithm to compute them.
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Figure 12: Trajectories from the Netlogo Flocking data set.

average (10 sets) std. dev.

ε
=

4

n
200
300
400

OG RG CO SW
0 0 0 0

3.0 1.7 3.2 9.1
23.1 12.3 31.1 112.2

OG RG CO SW
0 0 0 0

3.99 2.86 3.63 16.27
23.48 17.95 21.65 252.86

ε
=

5

n
200
300
400

OG RG CO SW
2.9 2.2 3.0 10.8

41.6 38.4 61.7 229.0
396.1 259.0 410.8 5299.6

OG RG CO SW
3.58 2.00 4.60 11.00

12.17 6.50 12.79 77.89
64.15 47.61 53.61 2363.13

ε
=

6

n
200
300
400

OG RG CO SW
33.9 25.9 36.6 229.3

396.1 304.5 418.6 5017.3
1905.7 1357.0 1830.4 -

OG RG CO SW
9.63 7.98 9.83 45.00

108.00 64.43 106.38 2466.90
250.68 204.28 226.49 -

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Table 8: The average number of maximal groups for m = 10 and δ = 10, and the standard
deviation in the Netlogo data set for 10 generated sets.

For all definitions, the number of maximal groups increases as the density increases or
when ε increases. Furthermore, the refined group produces fewer maximal groups than
the other definitions, and swarm produces more. All definitions show a roughly 20-fold
increase from n = 200 to n = 300 when ε = 5. From n = 300 to n = 400, the swarm
definition has a larger than 20-fold increase, while the other three definitions have a less
than 10-fold increase. For ε = 4, the values are too small for such observations. For ε = 6,
we notice that the increase for swarm from n = 200 to n = 300 is much larger than for the
other three definitions. Hence, it seems that swarm has a larger increase in the number of
maximal groups than the other three definitions when the density or ε increases.
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Figure 13: (Top) Frame from video recording of the corridor. (Bottom) Extracted trajectories
from the video.

4.2.2 Pedestrians in a Synthetic Environment

The purpose of this experiment is to measure the conformity of a grouping definition in
a dense environment. We use the data set which consists of trajectories extracted from
video recordings of people walking in a synthetic environment [17, 53]. These trajectories
are recorded by the Institute for Advanced Simulation of Jülich Supercomputing Centre to
study the dynamics of pedestrians.

The particular data set we use consists of two sets of people walking in opposite direc-
tions through a corridor that is 8 meters long and 3.6 meters wide [22]. See Figure 13.1 The
density inside the corridor is controlled by the widthw, in centimeters, of the two entrances
to the corridor: a larger width w means that more people can enter the corridor simulta-
neously. The considered widths w are taken from {120, 160, 200, 250}. Each experiment
consists of 300 trajectories, each of approximately 300 vertices as well.

In our experiments we fix the inter-entity distance ε to 80 cm, and choose the minimum
group sizem from {3, 6, 9}. For the minimum required duration δ we consider values in the
range [60, 180]. This corresponds to a minimum group duration roughly between four and
twelve seconds. For comparison, the average time t for a person to cross the corridor ranges
from roughly twelve to twenty-three seconds. Note that since the density of the environ-
ment is extremely high, the swarm algorithm—whose running time is exponential—was
unable to output any maximal group after a reasonable period of time (around 6 hours).
Therefore, we exclude the swarm definition in these experiments.

1The frame is taken from http://ped.fz-juelich.de/experiments/2009.05.12 Duesseldorf Messe Hermes/
export/bot-360-250-250v2.mp4
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m = 3 m = 6 m = 9

w
=

1
2
0

t
=

2
5
1
.7
1

δ OG RG CO
60 901 341 886
90 600 190 595
120 394 117 394
150 240 55 241
180 144 35 141

δ OG RG CO
60 691 177 682
90 431 68 431

120 261 31 264
150 132 13 134
180 59 7 55

δ OG RG CO
60 582 116 579
90 348 26 351
120 200 7 203
150 88 5 91
180 40 3 37

w
=

1
6
0

t
=

3
1
8
.4
2

δ OG RG CO
60 4718 1126 4313
90 3991 580 3669
120 3371 387 3111
150 2802 290 2595
180 2246 229 2075

δ OG RG CO
60 4416 867 4025
90 3722 382 3414

120 3118 232 2868
150 2569 170 2370
180 2037 138 1874

δ OG RG CO
60 4200 747 3813
90 3518 286 3215
120 2923 154 2678
150 2394 105 2204
180 1871 85 1713

w
=

2
0
0

t
=

3
6
9
.2
3

δ OG RG CO
60 9749 2233 8018
90 8700 1449 7164
120 7697 959 6337
150 6787 700 5616
180 5948 538 4926

δ OG RG CO
60 9452 1959 7734
90 8426 1232 6902

120 7431 768 6083
150 6540 535 5378
180 5722 397 4708

δ OG RG CO
60 9194 1825 7488
90 8180 1123 6669
120 7198 672 5863
150 6325 457 5168
180 5510 338 4503

w
=

2
5
0

t
=

3
7
4
.3
8

δ OG RG CO
60 9277 2834 8396
90 8205 1888 7438
120 7280 1153 6617
150 6406 680 5809
180 5580 429 5064

δ OG RG CO
60 9030 2611 8158
90 7972 1693 7212

120 7054 976 6400
150 6190 524 5605
180 5381 302 4876

δ OG RG CO
60 8777 2487 7921
90 7725 1574 6981
120 6819 861 6182
150 5963 422 5394
180 5156 231 4667

Table 9: The number of maximal groups in the pedestrian data set.

The Number of Maximal Groups. The numbers of maximal groups for the considered
parameter values are listed in Table 9. We first consider the number of maximal groups as
a function of w, and thus of the density of the environment. As Figure 14 (left) highlights
for the case m = 6 and δ = 150, we see that up to w = 200, the number of reported
maximal groups increase as a function of w. This applies for the three definitions of a
group, although the number of maximal groups according to the original group and the
convoy increases much faster than for the refined group. For even bigger values of w,
the number of maximal groups flattens off, or sometimes even decreases. These results
are more apparent for larger values of δ. When the density becomes higher, the speed of
pedestrians becomes slower and pedestrians that are far apart are more likely to form a
group. These will make a maximal group becomes larger (in size) and much longer (in
duration) and consequently, will decrease the total number of maximal groups.

The number of maximal groups reported by the refined group definition is generally
much smaller than the number of maximal groups reported by the other two definitions.
This is also clearly visible in Figure 14 (right), where we show the number of maximal
groups, with m = 6, and w = 200, as a function of δ. The graphs for different settings of m
and w are similar. Here, we also see that the number of maximal groups decreases as we
increase the minimum required duration (which is to be expected).
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Figure 14: (left) The number of maximal groups (N ) for m = 6 and δ = 150 as a function
of the width w of the corridor entrance, which influences density. (right) The number of
maximal groups (N ) for m = 6 and w = 200 as a function of δ. There are much fewer
maximal groups according to refined groups when compared with original groups and
convoys.
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Figure 15: (left) The average number of conformity score (c) in the pedestrian data for
m = 6 and w = 120 as a function of δ. (right) The percentage of maximal groups with
conformity 100 in the for m = 6 and w = 120 as a function of δ.

Measuring the Conformity of a Group. Since all entities (pedestrians) completely cross
the corridor, we can classify each entity as type going “left to right” (type R), or “right to
left” (type L). We can extend this notion to groups of entities by taking the type of the
majority of its members (in case of ties we pick arbitrarily). We then define the conformity
c(G) of a group G as the percentage of its members that have the same type as the type of
the group. Hence, the conformity of G is a value varying from 50, half of the members of G
cross the corridor each way, to 100, all members of G go in the same direction. Intuitively,
we expect that a set of people that act as a group (in the social sense) travel in the same
direction, and thus we expect the conformity to be high in a good grouping definition.
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We show the average conformity score in Figure 15 (left). We also consider the percent-
age of maximal groups that have conformity 100, that is, all group members travel in the
same direction. We say that such a group is uni-directional. The results are in Figure 15
(right). Consider the case where m = 6 and w = 120. For all definitions, we see that
as the minimum required duration increases, so does the average conformity score and
the percentage of uni-directional maximal groups. However, the refined group definition
generally has a much higher average conformity score and percentage of uni-directional
maximal groups. In particular, for a duration as short as 90 time units (about 5 seconds), all
maximal groups are uni-directional. For the original group and the convoy, this requires a
minimum duration threshold of more than 180. These results are even more clearly visible
as we increase the width of the corridor. For example, for w = 250, all maximal groups
from the refined group definition with a duration of at least δ = 180 are uni-directional,
whereas in the original group and the convoy definition, less than 20% of the reported
maximal groups are uni-directional, even if we increase the minimum required duration to
180. We expect that this is mostly due to the fact that the original group and the convoy
report many more maximal groups than the refined group.

Research question (2): dependence on density. As expected, all grouping definitions
find more groups when the density of entities increases or when connectedness is satisfied
at larger distances. The swarm definition has a larger increase in the number of maximal
groups than the other definitions. Since we do not have human-annotated groups data, we
cannot draw further conclusions from these observations.

However, in an extreme case where the density is very high and entities only move
in opposite directions, the refined group appears to be more natural. The original group
and convoy report many groups consisting of entities that move in opposite directions,
whereas the refined group finds only a few of them. Another interesting observation is
that the refined group gives fewer groups. We believe that the type of connectivity used by
grouping definitions might be the reason behind this finding. The refined group considers
connectivity which is much more restricted than the other definitions (refer to Table 1). It is
not clear whether this is an advantage or a disadvantage since the nature of all definitions
gives rise to groups that share entities at the same time.

4.3 Dependence on Sampling Rate

The purpose of our last experiment is to examine how different sampling rates of trajec-
tories affect the maximal groups produced by each definition. We conduct experiments
by gradually removing vertices from trajectories, thus decreasing their sampling rate. For
each new data set consisting of trajectories with a lower sampling rate, we count how many
maximal groups are found by each definition.

The data set consists of trajectories from pedestrians inside the Grand Central Terminal
in New York City, USA (see Figure 16)2. The data set contains 6000 video frames in which
data points are generated manually. This is once every 0.8 seconds. There are 12,684 pedes-
trians, with an average of 105.52 pedestrians in each frame. For our experiment, we choose
two sets of 800 consecutive frames that have a high density. The first set contains 2591
trajectories while the second contains 3313 trajectories. The average number of vertices in
a trajectory are 46.57 and 46.85, respectively.

2The background image and movement data are from [51].
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Figure 16: The Grand Central Terminal and trajectories of pedestrians.

First, we create a homography matrix to map frame coordinates from the data set into
ground coordinates. We choose ε = 0.76m for a personal distance between pairs, based
on the maximum close phase from Proxemics Theory [14]. We vary the required minimum
duration for a maximal group δ ∈ {8, 12, 16} in seconds. Finally, we consider different
sampling rates for the two sets of trajectories by taking 25%, 50%, and100% of the vertices
of the trajectories. Some trajectories may be removed because less than 2 vertices remain.
The results of our experiments are in Tables 10 and 11.

We notice that the number of original groups and refined groups is stable or increases
slightly when reducing the sampling rate. In contrast, the number of convoys decreases
slightly and the number of swarms decreases substantially. This trend is related to the
cumulative version of the time duration of swarms. Imagine a swarm with several dis-
connected time intervals on its time duration (with a sampling rate of 100%). By reducing
the sampling rate, some of these time intervals are likely to disappear, or their length is re-
duced. Therefore, the swarm may not meet the required δ anymore. On the other hand, the
other definitions which use consecutive timestamps are not affected much by this situation.

Research question (3): dependence on sampling rate. In general, it is preferable when a
grouping definition is not influenced too much by the sampling rate, so in this respect the
original and refined group definitions perform a bit better than convoys and much better
than swarms.

5 Conclusions and Future Work

We experimentally evaluated four definitions for grouping in trajectory data: (ORIGINAL)
GROUPS, REFINED GROUPS, CONVOYS, and SWARMS. We ran quantitative experiments to
establish how well these definitions correspond to the human intuition of a group, how the
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25% 50% 100%

δ = 8s

OG 174 178 170
RG 173 177 169
CO 140 158 177
SW 153 180 249

δ = 12s

OG 127 118 116
RG 127 118 117
CO 111 122 121
SW 115 138 199

δ = 16s

OG 97 96 96
RG 97 97 96
CO 92 94 97
SW 98 111 162

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Table 10: The number of maximal groups from 2591 trajectories in the Grand Central Ter-
minal data set with different sampling rate.

25% 50% 100%

δ = 8s

OG 276 268 257
RG 269 262 255
CO 222 256 264
SW 229 259 379

δ = 12s

OG 211 206 203
RG 206 200 200
CO 190 203 204
SW 196 215 304

δ = 16s

OG 172 168 159
RG 167 163 157
CO 160 156 161
SW 166 183 252

OG = Original Groups, RG = Refined Groups, CO = Convoys, SW = Swarms

Table 11: The number of maximal groups from 3313 trajectories in the Grand Central Ter-
minal data set with different sampling rate.

number of groups depends on the density of the entities in their environment, and how the
number of groups depends on the sampling rate of the trajectories.

For qualitative assessment, we developed a style of video annotation that allows us to
compare two different grouping definitions. It is best suited for comparisons to groups
from human annotation. Videos using this visualization can be found on our website [47].

Conclusions. From our experiments, we draw three main conclusions.

1. Recognizing human-annotated groups. The REFINED GROUPS scores best in terms of
recognizing all sets of entities that were a group according to the human annotations
(highest F1-score). However, the difference is small: the ORIGINAL GROUPS, REFINED
GROUPS, and CONVOYS definitions all perform similarly.
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2. Stability under different sample rates. We observe that the definitions that consider
the trajectories to be continuous mappings from time to space (ORIGINAL GROUPS
and REFINED GROUPS) are more stable than the definitions considering the trajectories
as discrete input (CONVOYS and SWARMS) when we consider the number of reported
groups under reductions of the sampling rate.

3. Difference between definitions. In general, it appears that the SWARM definition
is most different among the four definitions, suggesting that taking group duration
consecutively or cumulatively has a larger effect on grouping than the discrete or
continuous handling of the data, or the type of connectedness (see Table 1).

Future Work. We identify several directions for future research.

• Our first conclusion has a low confidence, since all results are similar. To be more
conclusive in our experiments, we first of all need better human annotation (refer to
Figure 11 (middle), similar cases also occur in other human-annotated data). In ad-
dition, we need more data sets. One interesting source is animals trajectory data sets
(e.g., from Movebank [31]) since they may exhibit different behavior when grouping
for various activities (e.g., foraging, migration) than pedestrians walking together.

• Our third conclusion raises the question what causes the SWARM definition to per-
form so differently. The definition is more robust to noise than the other methods
because swarms count duration cumulatively rather than consecutively. On the flip
side, the definition also finds more doubtful groups that arise from several short,
by-chance encounters. Therefore, robust grouping definitions can be developed and
compared, which would depend on a fourth parameter that describes how noise is
handled. Examples are platoons [26] and robust groups [5]. Note that the extra pa-
rameter is expected to make proper experimentation harder.

• All four definitions considered in our experiments depend heavily on the spatial com-
ponent to define the “togetherness" between entities (at certain times). However, the
spatial component only concerns the distance between entities. Nevertheless, we can
further explore other features to extend the approach to define togetherness so that it
is not influenced solely by the distance between entities, for example, using measures
for trajectories/groups of trajectories (e.g. density, formation stability, etc.) [49] or
contextual information and semantic data of the trajectories (e.g., consider the type of
entities and their relation such as parent-child or leader-follower relationship) [2, 6].
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