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ABSTRACT
With the widespread deployment of mobile devices with position-
ing capabilities, increasingly massive volumes of trajectory data
are being collected that capture the movements of people and ve-
hicles. This data enables co-movement pattern detection, which
is important in applications such as trajectory compression and
future-movement prediction. Existing co-movement pattern detec-
tion studies generally consider historical data and thus propose off-
line algorithms. However, applications such as future movement
prediction need real-time processing over streaming trajectories.
Thus, we investigate real-time distributed co-movement pattern de-
tection over streaming trajectories.

Existing off-line methods assume that all data is available when
the processing starts. Nevertheless, in a streaming setting, un-
bounded data arrives in real time, making pattern detection chal-
lenging. To this end, we propose a framework based on Apache
Flink, which is designed for efficient distributed streaming data
processing. The framework encompasses two phases: clustering
and pattern enumeration. To accelerate the clustering, we use a
range join based on two-layer indexing, and provide techniques
that eliminate unnecessary verifications. To perform pattern enu-
meration efficiently, we present two methods FBA and VBA that
utilize id-based partitioning. When coupled with bit compression
and candidate-based enumeration techniques, we reduce the enu-
meration cost from exponential to linear. Extensive experiments
offer insight into the efficiency of the proposed framework and its
constituent techniques compared with existing methods.
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1. INTRODUCTION
With the proliferation of GPS-equipped devices, massive and in-

creasing volumes of trajectory data that capture the movements of
humans, vehicles, and animals are being generated. Analyzing this
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Figure 1: Example of Future Movement Prediction

data is important in a wide range of applications. One important
type of analysis is the discovery of co-moving objects, termed co-
movement pattern detection. It can be used in future-movement
prediction [16, 21], trajectory compression [21], and location-based
services [38], to name but a few applications. Fig. 1 exemplifies
future-movement prediction using co-movement patterns. Given
seven moving objects oi (1 ≤ i ≤ 7), it is of interest to discover
groups of objects that travel together. Specifically, we find three co-
movement patterns, i.e., P1 = {o1, o2} with pattern “Home→ City
center → Shopping mall”, P2 = {o3, o5} with pattern “Home →
City center→ Kommune”, and P3 = {o4, o6} with pattern “Home
→ Countryside → University”. Based on these patterns, we pre-
dict the next movement (i.e., “University”) for a new object o8 that
moves following “Home→ Countryside”.

A co-movement pattern [18, 37] refers to a group of objects
traveling together for a certain period of time. Many variants of
co-movement patterns (e.g., flock [13], group [29], convoy [17],
swarm [20], platoon [19]) have been developed with different con-
straints. Fan et al. [10] propose a unified definition, which we adopt
for generality. In this definition, a co-movement pattern contains a
set O of objects with a time sequence T satisfying five constraints:
(i) closeness, to control the spatial proximity of objects in O (i.e.,
the objects in O should belong to the same cluster at each time in
T ); (ii) significance M , to control the minimum number of objects
in O; (iii) duration K, to control the length of T ; (iv) consecutive-
ness L, to control the minimum length of each consecutive segment
in T ; and (v) connection G, to control the length of gaps between
consecutive segments in T , where a segment is an consecutive sub
time sequence of T . Although an arbitrary clustering method can
be employed to capture closeness, we use density-based clustering
and DBSCAN [9] that are used widely [17].

Due to the deployment of massive populations of devices with
positioning capabilities, it is becoming increasingly relevant to be-
ing able to support large-scale settings with streaming trajectories.
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Functionality such as future movement prediction and trajectory
compression needs real-time processing. For example, in future-
movement prediction, if an unexpected event such as an accident
occurs in the road network, it is important to be able to detect new
patterns in real time. Hence, we investigate the problem of real-
time co-movement pattern mining over streaming trajectories.

Existing off-line batch processing algorithms [10, 13, 17, 19, 20,
29] were not intended for, and are not effective at, real-time co-
movement pattern detection on streaming data. In off-line process-
ing, all data is available when the processing starts. In a streaming
setting, unbounded data arrives in real time, making pattern detec-
tion more difficult. For instance, one partitioning technique [10]
used in pattern detection partitions the objects according to their
closeness. In Fig. 1, objects o1 and o7 are not close at time t0, but
they are close at time t3. In the off-line setting, we can put o1 and
o7 in the same partition because all data is available when the pro-
cessing starts. However, in the online setting, we cannot put o1 and
o7 in the same partition at t0. To support efficient co-movement
pattern detection over streaming trajectories, three challenges have
to be tackled.

Challenge I: How to handle the large scale of streaming trajecto-
ries in real time? To address this, we leverage Flink for distributed
stream processing. Flink exploits pipelined data transfer to enable
low latency and high throughput.

Challenge II: How to efficiently cluster streaming trajectories?
To address this, we adopt the two-layered GR-index, which uses a
grid index as the global index and R-trees as local indexes for grid
cells. Based on the GR-index, we use a range join in an initial clus-
tering step, and we provide provably correct techniques to eliminate
so-called unnecessary verifications. The join processing is accel-
erated by performing range queries when building the GR-index,
rather than performing querying after index construction. Again,
we prove the correctness of the processing.

Challenge III: How to reduce the exponential cost of pattern enu-
meration? To address this, a simple yet efficient id-based partition-
ing method is presented. In addition, fixed-length and variable-
length bit compression techniques are developed, which reduce the
storage cost from O(2n) to O(n), where n is the number of trajec-
tories. We also propose candidate-based enumeration approaches,
where patterns are generated based on valid candidates; this also
reduces the processing cost from exponential to linear.

To sum up, the key contributions of this paper are as follows.

• We offer the first proposal for real-time co-movement pattern
detection over streaming trajectories in Flink, adopting an es-
tablished general co-movement pattern definition and using
DBSCAN for clustering.
• We use a two-layered GR-index based range join to accel-

erate clustering, and we provide provably correct techniques
that make it possible to avoid unnecessary verifications.
• We propose two approaches, FBA and VBA, to perform pat-

tern enumeration efficiently. Moreover, we develop bit com-
pression and candidate-based enumeration techniques that
reduce the cost from exponential to linear.
• Extensive experiments with both real and synthetic data of-

fer insight into the efficiency and scalability of the presented
framework and its constituent techniques.

The rest of the paper is organized as follows. We review related
work in Section 2. Then, we present preliminaries in Section 3.
Section 4 describes the framework. Sections 5 and 6 detail the al-
gorithms for clustering and pattern enumeration, respectively. Ex-
perimental findings are reported in Section 7. Finally, we conclude
the paper and provide directions for future work in Section 8.

2. RELATED WORK
We proceed to review related work on co-movement pattern min-

ing and then distributed stream processing.

2.1 Comovement Pattern Mining
Work on co-movement pattern mining can be classified into two

categories according to the constraints on the pattern duration. The
first category requires strict consecutiveness, and does not allow
any gap between consecutive segments. The second category al-
lows relaxed constraints on the pattern duration. The first category
includes the concepts of flock [13] and convoy [17]. The differ-
ence between flock and convoy lies in the clustering methods used.
In flock, objects are clustered based on the inter-object distances.
Specifically, the objects in a cluster have pairwise distances below
a given threshold. In contrast, convoy relies on density-based clus-
tering [9]. The second category contains group [29], swarm [20],
and platoon [19]. The main idea of these three methods is to grow
an object set from an empty set in a depth-first manner. During the
growing, different pruning techniques are provided to eliminate un-
qualified branches. To unify the two categories, Fan et al. [10] offer
a more general co-movement pattern definition, which we aim to
support. However, we notice that the above methods focus on his-
torical trajectories, while we aim to provide real-time co-movement
pattern mining on streaming trajectories. Although proposals for
computing flock [28], convoy [33], and group [18] on streaming
trajectories exist, they assume centralized settings and only aim to
support specific co-movement patterns. In contrast, we aim to sup-
port general co-movement pattern mining, and provide a distributed
framework capable of supporting real-time mining on large-scale
streaming trajectories.

Several mining frameworks for distributed stream processing also
exist. Agrawal et al. [2] study pattern matching over event streams.
Gu et al. [12] explore ranking in pattern matching for complex
event streams. Yu et al. [35] propose two efficient methods for
discovering frequent co-occurrence patterns across multiple data
streams. Vistream [32] supports interactive visual exploration of
neighbor-based patterns in data streams. Further, Yang et al. [31]
present a real-time distributed stream processing framework. None
of proposals target co-movement pattern mining over streaming tra-
jectories, and thus, they are unable to solve our problem.

Finally, several studies [1, 6, 7, 24, 25, 26, 27, 34] investigate
clustering on streaming trajectories. Although clustering is the first
step of co-movement pattern mining, these existing efforts pro-
vide centralized methods, which are unable to contend with support
large-scale steaming trajectories.

2.2 Distributed Stream Processing
The processing of streaming data is gaining in importance, due

to the steadily growing number of data sources and the increasing
real-time requirements for data analysis [30]. In keeping with this,
different distributed stream processing systems have been explored,
proposed, including SPADE [11], Naiad [22], Microsoft StreamIn-
sight1, and IBM Streams2. These systems are either simple pro-
totype systems or closed-source systems, which renders them un-
suited as an underlying platform for our work.

Recently, several open-source distributed stream processing plat-
forms have also been proposed, which offer two different types of
processing. In tuple-at-a-time processing, every incoming record
is processed as soon as it arrives, without waiting for other records.

1https://blogs.msdn.microsoft.com/streaminsight/
2https://www.ibm.com/cloud/streaming-analytics/
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Table 1: Symbols and Description
Notation Description
r = (l, t) the GPS record with location l = (x, y) and time t
o = ⟨r1, r2, ...⟩ the streaming trajectory
T the time sequence
T [i] the i-th element in T
|T | the number of elements in T
max(T ) the last time in T
Tl the last time segment in T
ϵ the distance threshold
minPts the minimal number of points to form a dense region

used in density-based clustering DBSCAN
M the significance constraint
K the duration constraint
L the consecutive constraint
G the connection constraint
CP(M,K,L,G) the co-movement pattern w.r.t. M , K, L, and G
RJ(O, ϵ) the range join query for a set O with ϵ
RQ(o, ϵ) the range query for a query object o with ϵ
St the snapshot at time t
lg the grid cell width
key the key for a grid cell g
B[oi] or B[O] the bit string for the trajectory oi or the set O

Storm3, Samza4, and Flink5 support this type of processing. Next,
with mini-batch semantics, in-coming records that have arrived
within the last few seconds are batched and then processed in a sin-
gle mini-batch. Spark Streaming6 supports this type of processing.
We choose Flink, because it is a typical stream processing platform,
and because it offers both efficiency and reliability. Nonetheless,
our methods and techniques (e.g., GR-index, bit-compression, and
candidate-based enumeration) are generic and hence can be easily
adapted to other distributed stream processing platforms.

3. BACKGROUND
In this section, we introduce in turn the notion of co-movement

pattern, DBSCAN, and range join. Table 1 summarizes the symbols
used frequently throughout the paper.

3.1 CoMovement Pattern
A GPS record is a pair r = (l, t), where l is a location and t is

a time value. A sequence o = ⟨r1, r2, ..., rn⟩ of GPS records that
capture a particular trip make up a trajectory.

Following an existing trajectory pattern detection approach [10],
we first discretize the timestamps in trajectories. The discretiza-
tion maps the real clock times to indices of the time intervals dur-
ing which they occurred. For instance, assume that we partition
the time line into intervals of duration 5s and that the start time
is 13:00:20 UTC. Then the time series ⟨13:00:21 UTC, 13:00:24
UTC, 13:00:28 UTC, 13:00:32 UTC, 13:00:42 UTC⟩ is discretized
into ⟨0, 0, 1, 2, 4⟩. This example discretization causes (i) a se-
quence where 0 appears twice, and (ii) that has a misleading gap.
To avoid such problems, it is important to choose the duration used
for discretization carefully. The duration cannot be too large or too
small. In our experiments, the interval duration is set to 1s or 5s
depending on sampling rates of the datasets used. Next, we give
the definition of a discretized time sequence.

DEFINITION 1. (Time Sequence). Let T = {1, 2, ...,N} be a
discretized temporal dimension. A time sequence T is defined as a
3http://storm.apache.org/
4http://samza.apache.org/
5http://flink.apache.org/
6http://spark.incubator.apache.org/
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Figure 2: Example of Co-movement Patterns

sequence of elements from T, i.e., T = ⟨t1, t2, ..., tm⟩, where (i) ti
(1 ≤ i ≤ m) ∈ T, and (ii) ti > tj iff i > j (ti ∈ T , tj ∈ T ).

A time sequence T is consecutive if ∀1 ≤ i < |T | (T [i + 1] =
T [i] + 1). We call a consecutive sequence T a segment. For ex-
ample, T1 = ⟨1, 2, 3, 4⟩ and T2 = ⟨1, 2, 4, 5⟩ are two sequences,
where T1 is a segment while T2 is not, because time 3 is miss-
ing. Based on the definition of sequence, we define the notions
of L-consecutive and G-connected. Here, L-consecutive is used to
control the lengths of segments, while G-connected is employed to
control the lengths of gaps between consecutive segments.

DEFINITION 2. (L-consecutive). Let Ti (i ≤ i ≤ m) be seg-
ments with |Ti| ≥ L. Then sequence T = ∪Ti is L-consecutive.

DEFINITION 3. (G-connected). A sequence T is G-connected
if the gap between any neighboring times is at most G, i.e., ∀1 ≤
i ≤ |T | − 1 (T [i + 1] − T [i] ≤ G), where T [i] denotes the i-th
element in T .

For instance, T = ⟨1, 2, 4, 5, 6⟩ is 2-consecutive and 2-connected.
Specifically, there are two segments T1 = ⟨1, 2⟩ and T2 = ⟨4, 5, 6⟩
in T , and the length of each segment is no smaller than 2. Thus, T
is 2-consecutive. Further, according to Definition 3, ∀1 ≤ i ≤ 4
(T [i+ 1]− T [i] ≤ 2). Hence, T is 2-connected.

Next, we formalize the definition of co-movement pattern. Co-
movement pattern mining detects a group of objects that move to-
gether while satisfying five constraints: (1) “closeness” that defines
the concept of “moving together”, (2) “significance” that controls
the number of the objects that move together, (3) “duration” that
controls the length of time when objects move together, while (4)
“L-consecutive” and (5) “G-connected” that relax the consecutive-
ness of “duration”. Specifically, the entire time period that objects
move together is not necessarily strictly consecutive, as gaps are al-
lowed between consecutive segments. Hence, “L-consecutive” and
“G-connected” control the length of each consecutive time segment
and the gap between two consecutive time segments, respectively.

DEFINITION 4. (Co-movement Pattern). Given a set ST of
discretized trajectories, a subset O of ST is a co-movement pattern
CP(M,K,L,G) if a time sequence T exists such that the following
five constraints are satisfied: (i) closeness: the locations of trajec-
tories in O belong to the same cluster in every time of T ; (ii) signif-
icance: |O| ≥ M ; (iii) duration: |T | ≥ K; (iv) consecutiveness:
T is L-consecutive; and (v) connection: T is G-connected.

To provide a concrete definition of the first constraint (i.e., close-
ness), we choose to rely on density-based clustering as implemented
by the popular clustering method DBSCAN (as also done for con-
voy [17]), which is detailed in the next subsection. Considering
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the example in Fig. 2, a dotted circle denotes a cluster. Given
M = 3,K = 4, L = 2, and G = 2, then O = {o4, o5, o6} is
a co-movement pattern. Specifically, for T = ⟨3, 4, 6, 7⟩, the fol-
lowing hold: (i) o4, o5, and o6 belong to the same cluster at times 3,
4, 6, and 7; (ii) |O| = 3; (iii) |T | = 4; and (iv) T is 2-consecutive
and 2-connected.

In a setting with streaming trajectories, GPS records are pro-
duced continuously over time. Therefore, we define the notion of
streaming trajectory below.

DEFINITION 5. (Streaming Trajectory). A streaming trajec-
tory is an unbounded ordered sequence of GPS records, i.e., o =
⟨r1, r2, ...⟩.

In Fig. 2, o1 to o8 are streaming trajectories. A streaming trajec-
tory is unbounded, i.e., the next GPS record and the total length of
the trajectory are unknown in advance, which makes real-time co-
movement pattern mining more difficult. Here, “real-time” means
being able to process the data, and show it in results as soon as it ar-
rives. For the setting of stream processing, we introduce the notion
of a snapshot and the real-time co-movement pattern mining.

DEFINITION 6. (Snapshot). A snapshot St = {o1.l, o2.l, ...,
on.l} contains all the locations of a trajectory set {o1, o2, ..., on}
at time t.

For simplicity, we use {o1, o2, ..., on} to represent {o1.l, o2.l,
..., on.l}. In Fig. 2, there exist eight snapshots.

DEFINITION 7. (Real-time Co-movement Pattern Mining).
Given parameters M , K, L, and G that defines a general co-
movement pattern, real-time co-movement pattern mining finds all
co-movement patterns in the snapshot set S = {S1, S2, ..., St},
where t is the current time t.

As an example, if the current time is 5, {o4, o5} and {o6, o7} are
CP(2, 4, 2, 2) patterns where T = ⟨2, 3, 4, 5⟩. However, no CP(3,
4, 2, 2) pattern exists until time 7, where {o4, o5, o6} qualifies with
T = ⟨3, 4, 6, 7⟩.

3.2 DBSCAN
DBSCAN [9] is a popular density-based clustering method. It

relies on two parameters to characterize density or sparsity, i.e.,
a positive real value ϵ and a positive integer minPts. Next, we
introduce the definitions of core point and density reachable point.

DEFINITION 8. (Core Point) A location u is a core point if at
least minPts locations v satisfy d(u, v) ≤ ϵ, where d(u, v) de-
notes the distance between u and v.

DEFINITION 9. (Density Reachable Point) A location u is den-
sity reachable from location v if there exist a sequence of locations
x1, x2, ..., xt(t ≥ 2) such that (i) x1 = v and xt = u; (ii) xi

(1 ≤ i < t) are core points; and (iii) d(xi, xi+1) ≤ ϵ (1 ≤ i < t).

Based on Definitions 8 and 9, a cluster is formed by a set of core
points and their density reachable points. At time 3 in Fig. 2, given
the ϵ shown in the figure and minPts = 3, o3, o4, o5, o6, and o7
are core points, while o2 and o8 are density reachable points. Thus,
a cluster {oi|2 ≤ i ≤ 8} is formed. By scanning the whole data
set, we can find all clusters.

3.3 Range Join
According to Definition 8, to determine whether u is a core point,

we need to find all locations v in each snapshot St with their dis-
tances to u satisfying d(u, v) ≤ ϵ. A range query can be employed
to find core points.

pattern snapshot at time 1
time sequence

{0, 2, 4, 56}
trajectories

{1, 3}
...

<0>

..
<0>pattern snapshot at time 2

time sequence
{0, 2, 56}
trajectories

{1, 3, 4}
...

<0, 1>

..
<0, 1>

Discretization

Indexed 

Clustering

Pattern 

Enumeration

ICPE -

RangeJoin

ICPE-

DBSCAN

 snapshot at time 1
id location last time
0 (5, 6) -
1 (105, -7) -

...
...

... ...
snapshot at time 2

id location last time
0 (8, 9) 1
1 (100, 3) 1
... ... ...

id location time
0 (8, 9) 16:17
1 (100, 3) 16:17
... ... ...

id location time
0 (5, 6) 16:07
1 (105, 7) 16:07
... ... ...

cluster snapshot at time 1

cluster id cluster trajectories

0 {0, 2, 4, 56}

1 [1, 3]
...

cluster snapshot at time 2

cluster id cluster trajectories

0 {0, 2, 3, 56}
1 {1, 3, 4}

... ...

Figure 3: Indexed Clustering and Pattern Enumeration (ICPE)

DEFINITION 10. (Range Query) Given a set O of locations, a
threshold ϵ, and a query location u, a range query finds all loca-
tions v in O for u with their distances to u no larger than ϵ, i.e.,
RQ(u, ϵ) = {(u, v)|d(u, v) ≤ ϵ, v ∈ O}.

We use the L1-norm to measure the distance between two loca-
tions, although it is easy to also support other distance functions. A
range query RQ(u, ϵ) retrieves all locations v located in the range
region ([u.x − ϵ, u.x + ϵ], [u.y − ϵ, u.y + ϵ]), e.g., the red square
in Fig. 2. Thus, at time 1, RQ(o6, ϵ) = {(o6, o5), (o6, o7)}.

For clustering, we have to check every object o in St to deter-
mine whether o is a core point, i.e., we perform a range query for
every object o. Therefore, a range join can be used in the first step
of DBSCAN in order to improve efficiency.

DEFINITION 11. (Range Join) Given a set O of locations and
a threshold ϵ, a range join finds all location pairs in O with their
distances no larger than ϵ, i.e., RJ(O, ϵ) = {(u, v)|d(u, v) ≤ ϵ,
u ∈ O, v ∈ O}.

For example, in Fig. 2, given a set of locations at time 1 (i.e.,
O = {o1, o2, ..., o8}) and a threshold ϵ, RJ(O, ϵ) = {(o1, o2), (o3,
o4), (o5, o6), (o6, o7)}.

4. OVERVIEW OF COMOVEMENT PAT
TERN DETECTION

In this section, we present an overview of co-movement pattern
detection over streaming trajectories. Fig. 3 shows the framework
and the processing flow, termed as Indexed Clustering and Pattern
Enumeration (ICPE). ICPE takes streaming trajectories as input.

First, it uses window operations to transform the streaming tra-
jectories into snapshots, as discussed in Section 3.1. For example,
in Fig. 3, the streaming trajectories are transformed into snapshots,
i.e., a snapshot at time 1, a snapshot at time 2, and so on.

Second, ICPE performs index-based clustering based on Range-
Join and DBSCAN, to be detailed in Section 5. When a new snap-
shot arrives, ICPE detects the clusters of the trajectories that move
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together, in order to obtain a cluster snapshot. For instance, in
Fig. 3, we get several clusters for the snapshot at time 2, i.e., cluster
0: {0, 2, 3, 56}, cluster 1: {1, 3, 4}, and so forth.

Finally, when each cluster snapshot comes, ICPE utilizes Pattern
Enumeration to obtain all co-movement patterns, to be covered in
Section 6. For example, in Fig. 3, we get several patterns at time 2,
i.e., {0, 2, 56}, {1, 3, 4}, etc.

During the first step, we also need to consider time synchroniza-
tion for stream processing. Flink cannot ensure that trajectories are
processed in time order. However, pattern detection requires that
trajectories are processed in ascending time order. Hence, we add
“last time” information to each trajectory in every snapshot, to be
able to guarantee that trajectories are processed in time order. The
“last time” denotes the time of the most recent snapshot for which
the trajectory reported a location.

Using the “last time”, we can determine whether the system
needs to wait for the location of a particular time. As an example,
for a stream trajectory tr = {r1, r2, r3, r5, ...}, where ri denotes
the GPS record at time i, the “last time” associated with r3 is time
2, and the “last time” associated with r5 is time 3. In case the sys-
tem has only received r1 and r3, it must wait for r2, because “last
time” information of r3 indicates that a location was reported by
the trajectory for the snapshot at time 2 that has yet to be received.
Next, in case the system has received r1, r2, r3, and r5, it does
not need to wait for r4, because the “last time” information of r5
indicates that no position was reported for the snapshot at time 4.

5. INDEXED CLUSTERING
In this section, we first describe the GR-index, and then present

the index based RangeJoin and DBSCAN methods.

5.1 GRindex
As stated in Section 4, clustering includes two steps, i.e., we

first perform a range join on each snapshot St, and then, we use
DBSCAN to cluster St. To accelerate the range join, a two-layered
index, the GR-index [36], is built in Flink. GR-index is verified
efficient for distributed platforms (e.g., Spark, Storm). It uses a
grid index as a global index, and builds an R-tree [3] as a local
index for each grid cell.

Fig. 4 illustrates a GR-index for a specific snapshot, in which
Fig. 4(a) shows the global grid index and Fig. 4(b) shows the local
R-trees. The GR-index has 16 grid cells, and an R-tree for grid
cell g6 is shown as an example. The R-tree leaf nodes N1 and
N2 contain the real locations o4, o5, o7, and o8, and the minimum
bounding rectangles of N1 and N2 are shown in g6.

Key Computation. Each grid cell can be regarded as a partition
in Flink. The key of the grid cell that a location o = (x, y) belongs
to can be computed as ⟨⌊o.x/lg⌋, ⌊o.y/lg⌋⟩, where lg is the grid
cell width. For example, as shown in Fig. 4, given the location
o5 = (4, 8) and the grid cell width lg = 3, the key of g6 that o5
belongs to is ⟨1, 2⟩.

Note that, the GR-index is a primary index. We compute a key
for each location, and locations with the same key will be dis-
tributed to the same subtask when building local R-trees.

5.2 GRindex Based Range Join
We develop three algorithms to compute the range join based on

the GR-tree, i.e., GridAllocate, GridQuery, and GridSync. Fig. 5
depicts the processing of the ICPE-RangeJoin. GridAllocate builds
the global grid index (i.e., computes the key for each location) to
partition each snapshot into disjoint grid cells, and it transforms lo-
cations into data objects (i.e., locations contained in a specific grid
cell) and query objects (i.e., locations whose range region intersects

g1 g2 g4

g5

o1
o2

o3

g7 g8

g9 g12

g14 g16g15

o4
o6o5

o7

o9

o8

o10

o12

o11

o15
o14

o13

0

g3
g6

g10

g11

(a) Grid index (b) R-trees for all grid cells

1 2 3

0 g13

1

2

3

o4 o5 o6

N0

N1
N2

e1 e2

o7

N1

N2

Ɛ  

Rg3

Rg6

<2,3>

Rg6<1,2>

Rg10<1,1>

Rg11<2,1>

Rg13<0,0>
...

...

Figure 4: Example of a GR-index

with this grid cell). For each grid cell (key), a GridQuery method
builds the local R-tree for the data objects, and performs a range
query for each query object. Finally, GridSync collects the results
from all grid cells. Here, a GR-index is built for each snapshot, and
is deleted after querying. Thus, index maintenance is omitted.

According to the functioning of Flink, after building the grid in-
dex, the partitions are independent of each other, i.e., locations in
other partitions cannot be accessed. However, during range-join
processing, we have to access other partitions. As shown in Fig. 4,
although o9 is not located in grid cell g6, the range query result
RQ(o9, ϵ) includes location o7 that is located in grid cell g6. To
address this, we replicate each location into multiple GridObjects,
and distribute them to the relevant grid cells.

DEFINITION 12. (GridObject). A GridObject go = (key, flag,
location) is a triple, where location is the actual position of go,
flag indicates the type of go, and key records the grid cell that go
belongs to.

Specifically, if flag is false, then go is a data object, meaning that
its location needs to be inserted into the corresponding R-tree of
this grid cell; otherwise, if key is true, then go is a query object,
indicating that the grid cell with key might contain the range query
result for go.

Based on the definition of GridObject, a location can be rep-
resented as a data object (key(g), false, location), where g is the
original grid cell that location belongs to; and several query objects
(key(gi), true, location), in which grid cells gi intersect with the
range region of RQ(location, ϵ).

For example, in Fig. 4, o9 can be represented as a data object go1
(⟨1, 1⟩, false, o9), indicating that o9 needs to be inserted into the R-
tree of grid cell g10. In addition, according to the range region (i.e.,
the red square centered at o9 with length 2ϵ), o9 is represented by
four query objects go2 = (⟨0, 2⟩, true, o9), go3 = (⟨1, 2⟩, true, o9),
go4 = (⟨0, 1⟩, true, o9), and go5 = (⟨1, 1⟩, true, o9), because the
range query result for o9 is contained in grid cells g5, g6, g9, and
g10. To improve the efficiency of the range join, we develop two
lemmas below to avoid unnecessary verifications.

According to the definition of a range query, we need to verify
all the grid cells that intersect with the range region. Nevertheless,
for a range join on a single dataset, verifying all the grid cells might
yield duplicated results [4]. For instance, in Fig. 4, o9 needs to be
distributed to grid cell g6, as the range region of o9 intersects with
g6, and thus, o9 is represented by the GridObject (⟨1, 2⟩, true, o9) to
find the result pair (o9, o7). In addition, o7 needs to be distributed
to grid cell g10, and thus, it is represented by the GridObject (⟨1, 1⟩,
true, o7) to find the result pair (o7, o9). The outcome is that pair
(o7, o9) is duplicated in the result. The idea of the first lemma is
that, instead of verifying all the grid cells intersected with the range
region ([o.x− ϵ, o.x+ ϵ], [o.y− ϵ, o.y+ ϵ]), we only verify half of
those grid cells, i.e., the grid cells that intersect with the upper part
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Algorithm 1: GridAllocate Algorithm
Input: a snapshot St, a grid cell width lg , a threshold ϵ

1 for each location o ∈ St do
2 key ← ⟨⌊o.x/lg⌋, ⌊o.y/lg⌋⟩
3 Skey ← {⟨x, y⟩|x ∈ [⌊(o.x− ϵ)/lg⌋, ⌊(o.x+ ϵ)/lg⌋], y ∈

[⌊o.y/lg⌋, ⌊(o.y + ϵ)/lg⌋]} − {key} ◃ Lemma 1
4 output GridObject(key, false, o) ◃ data object
5 for each keyi ∈ Skey do
6 output GridObject(keyi, true, o) ◃ query object

of the range region ([o.x− ϵ, o.x+ ϵ], [o.y, o.y+ ϵ]), as illustrated
in Fig. 6.

LEMMA 1. Given a set O of locations, a grid cell width lg , and
a distance threshold ϵ, if every location o = (x, y) ∈ O is repre-
sented as one go = (key, false, o) with key = ⟨⌊o.x/lg⌋, ⌊o.y/lg⌋⟩
and multiple goi = (keyi, true, o) with keyi ∈ {⟨x, y⟩|x ∈ [⌊(o.x−
ϵ)/lg⌋, ⌊(o.x+ ϵ)/lg⌋], y ∈ [⌊o.y/lg⌋, ⌊(o.y+ ϵ)/lg⌋]} − {key},
no result of RJ(O, ϵ) is missed.

PROOF. To prove Lemma 1, we only need to prove that no result
is missed if the range query RQ(oi, ϵ) only considers in the upper
part of the range region ([oi.x − ϵ, oi.x + ϵ], [oi.y, oi.y + ϵ]). As
shown in Fig. 6, assume that a location oj in the lower part of the
range region ([oi.x − ϵ, oi.x + ϵ], [oi.y − ϵ, oi.y]) is not in the
result of RQ(oi, ϵ), i.e., (oi, oj) is not included in RJ(O, ϵ). For
the location oj , it has to search in the upper part of the range region
([oj .x − ϵ, oj .x + ϵ], [oj .y, oj .y + ϵ]), which contains oi. Hence,
(oj , oi) is returned by RQ(oj , ϵ). For RJ(O, ϵ), (oj , oi) = (oi, oj)
due to the symmetry property, which contradicts the assumption
that (oi, oj) is not included.

Based on Lemma 1, we propose the GridAllocate algorithm. The
pseudo-code is depicted in Algorithm 1. It takes as inputs a snap-
shot St, a grid cell width lg , and a distance threshold ϵ. For each
location o in St, the algorithm first computes the key of the grid
cell that o belongs to (line 2). Next, it computes the keys Skey of
the set of grid cells that might contain locations that can contribute
to the range query result of o according to Lemma 1 (line 3). Then,
it compacts and outputs o as a data object (key, false, o) (line 4).
Finally, for each keyi in Skey , the algorithm compacts and outputs
o as a query object (keyi, true, o) (lines 5–6).

After performing GridAllocate, a partition (associated with a
particular key) obtains a set of data objects on which to build the R-
tree and a set of query objects for which to compute range queries.
Further, we also need to perform a range query for each data object
in the R-tee. A traditional approach is to build an R-tree using the
data objects and then perform the range query of each data object
and query object based on the R-tree. By inspired by [23], accord-
ing to the symmetry property of the range join on a single dataset,
we develop a lemma below to further avoid duplications.

LEMMA 2. Assume a set O of data objects in a particular par-
tition, a distance threshold ϵ, and an empty R-tree rt. Then, for

Algorithm 2: GridQuery Algorithm
Input: a stream of GridObjects Sq , a distance threshold ϵ

1 initialize the R-tree rt← ∅
2 for each GridObject o ∈ Sq and o.flag = false do
3 output rt.query(o, ϵ)
4 rt.insert(o)

5 for each GridObject o ∈ Sq and o.flag = true do
6 output rt.query (o, ϵ)

every data object o in O, if we first perform range query RQ(o, ϵ)
on rt and then insert o into rt, no result of RJ(O, ϵ) is missed.

PROOF. For a data object oi in O, assume that the result (oi, oj)
is not in the result of the range query RQ(oi, ϵ) on the current R-tree
rt, as oj comes after oi, and oj is not yet inserted into rt. However,
when we process the data object oj , and perform the range query
RQ(oj , ϵ) on the current rt, the result (oj , oi) will be returned. This
is because, oi is already inserted into rt as oi comes before oj . For
RJ(O, ϵ), we can get that (oi, oj) = (oj , oi) due to the symmetry
property. Therefore, this observation contradicts the assumption
that (oi, oj) is not reported.

Based on Lemma 2, we present the GridQuery algorithm, with
its pseudo-code shown in Algorithm 2. It takes as inputs a stream
of GridObjects Sq and a distance threshold ϵ. The algorithm first
initializes an empty R-tree rt (line 1). Next, for each data ob-
ject o ∈ Sq (i.e., o.flag = false), it first performs a range query
rt.query(o, ϵ) on rt and outputs the result, and then, it calls the
insert function to insert o into rt (lines 2–4). Thereafter, for each
query object o ∈ Sq (i.e., o.flag = true), the algorithm performs
a range query rt.query(o, ϵ), and outputs the result (lines 5–6).

Having performed the GridQuery algorithm, we obtain a neigh-
bor stream. The GridSync Algorithm that collects all the results is
omitted, as it is straightforward.

5.3 GRindex Based DBSCAN
Next, we apply our DBSCAN method to the result of a range

join, as the core points and the density reachable points can be eas-
ily retrieved from the result of range join. The pseudo-code is omit-
ted due to the space limitation.

As described elsewhere [8, 15], we can split the neighbor snap-
shot into several parts and then perform DBSCAN on each part in
parallel, and finally collect the results. However, the time complex-
ity of our DBSCAN method is O(n), where n is the number of the
locations contained in each snapshot. This is relatively inexpen-
sive compared with O(n2) cost of the centralized range join. Thus,
we do not need to further split every snapshot to achieve more par-
allelism. In our ICPE framework, we achieve the parallelism by
clustering snapshots separately.

6. PATTERN ENUMERATION
In this section, we present three approaches for pattern enumer-

ation over cluster streams.
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6.1 Baseline
We adapt the state-of-the-art distributed co-movement pattern

detection method (i.e., SPARE [10]) on historical trajectories as
the baseline algorithm. We note that SPARE uses a star partitioning
scheme for historical trajectories. However, this partitioning cannot
be applied to streaming trajectories, because we do not know which
trajectories are related in advance, and they thus cannot be dis-
tributed to the same partition at the beginning. Instead, we present
an id-based partitioning technique.

ID-based Partitioning Technique. A Flink subtask is created
for each trajectory o with the key equaling to the trajectory id o.id.
We use partition Pt(o) to denote the set of trajectories distributed
to subtask o.id at time t. In order to avoid duplications, Pt(o)
contains other trajectories (except for o) in the same cluster with
their ids larger than o.id. Note that, at different times ti, partitions
Pti(o) will be sent to the same subtask o.id for processing.

Fig. 7 shows all the partitions for Fig. 2, where a subtask is
created for each of 8 trajectories. At time 1, the cluster snap-
shot is {(o1, o2), (o3, o4), (o5, o6, o7)}, which results in partitions:
P1(o1) = {o2} for subtask 1, P1(o2) = ∅ for subtask 2, P1(o3) =
{o4} for subtask 3, P1(o4) = ∅ for subtask 4, P1(o5) = {o6, o7}
for subtask 5, P1(o6) = {o7} for subtask 6, P1(o7) = ∅ for sub-
task 7, and P1(o8) = ∅ for subtask 8.

Based on the significance constraint M , the lemma below is used
to find the valid clusters for a partition.

LEMMA 3. Given a cluster C and a significance constraint M ,
if |C| < M , then C can be discarded.

PROOF. The proof is simple due to the significance constraint
M , and it is thus omitted.

As an example, in Fig. 2, if M = 3, the clusters {o1, o2} and
{o3, o4} at time 1 can be discarded.

Pattern Enumeration. For each partition Pt(o) at time t, we
first enumerate all possible combinations of trajectories, and then
find the valid time sequence for each combination. Specifically, we
first initialize all possible patterns O ⊆ Pt(o) ∪ {o}, where |O| ≥
M . Note that, pattern enumeration on partition Pt(o) should in-
clude o. For simplicity, the pattern enumeration on partition Pt(o)
removes o because o is a common trajectory. Considering the ex-
ample in Fig. 7, given a partition P1(o5) = {o6, o7} and M = 2,
the possible patterns include {o6}, {o7}, and {o6, o7}, where o5 is
a comment element and is omitted in the patterns.

Pattern Verification. Next, we determine whether each pattern
O enumerated in Pt(o) is valid, i.e., we try to find the valid time
sequence T for O in the partitions Pi(o) (i ≥ t). More specifically,
for a pattern O, T is first initialized to {t}. If O also exists in Pt′(o)
at the next time t′, then T = T ∪ {t′}. If T satisfies the K, L, and
G constraints in Definition 4, then O is valid. As proved in [10],
no valid pattern is missed if every η snapshots are verified.

LEMMA 4. η = (⌈K
L
⌉−1)× (G−1)+K+L−1 guarantees

that no valid pattern is missed.

PROOF. The proof can be found elsewhere [10].

Hence, for pattens enumerated in Pt(o), we need to use η snap-
shots Pi(o) (t ≤ i ≤ t+η−1) to determine whether they are valid.
For example, in Fig. 7, if K = 4 and G = L = 2, then η = 6,
and thus, we use Pi(o) (1 ≤ i ≤ 6) to verify the patterns enu-
merated in P1(o). Although η snapshots are being processed at the
same time, this does not mean that our methods are batch methods.
This processing is simply necessary because multiple snapshots are
needed for verifying the validity according to Definition 4.

Based on the consecutive constraint L and the connection con-
straint G, two lemmas [10] can be used to avoid unnecessary veri-
fications when finding valid patterns.

LEMMA 5. Given a pattern O enumerated in partition Pt(o),
a consecutive constraint L, and a time sequence T obtained before
the current time t′, assume that the last time segment Tl of T satis-
fies |Tl| < L. If O ⊆ Pt′(o) and t′−max(T ) ̸= 1, then O can be
discarded.

PROOF. The proof is straightforward due to T = T ∪ {t′} does
not satisfy consecutive constraint L.

For instance, in Fig. 7, considering a pattern O = {o2} enu-
merated in P1(o1), we can get T = ⟨1, 2, 5⟩ before the current
time t′ = 7. Given L = 2, the length of the last time segment
Tl = {5} in T is smaller than L. In addition, as O ⊆ P7(o1)
and t −max(T ) = 7 − 5 = 2 > 1, O = {o2} can be discarded.
This holds because T = ⟨1, 2, 5, 7⟩ does not satisfy the consecutive
constraint L.

LEMMA 6. Given a pattern O enumerated in partition Pt(o),
a connection constraint G, and a time sequence T obtained before
the current time t′, if O ⊆ Pt′(o) and t′ −max(T ) > G, then O
can be discarded.

PROOF. For a time sequence T obtained before the current time
t′, if O ⊆ Pt′(o) and t′ −max(T ) > G, then T ∪ {t′} does not
satisfy constraint G, and thus, O can be discarded.

For example, in Fig. 7, considering a pattern O = {o4} enumer-
ated in P1(o3), we can get T = ⟨1, 2, 3⟩ before the current time
t′ = 6. If G = 2, O ⊂ P6(o3) and t′−max(T ) = 6−3 = 3 > 2,
then O can be discarded according to Lemma 6.

Based on Lemmas 3 to 6, we present Baseline algorithm, with
the pseudo-code shown in Algorithm 3. It takes as inputs a partition
Pt(o) = {oi|1 ≤ i ≤ |Pt(o)|} and four constraints (M,K,L,G).
First, Baseline initializes an empty list H , and computes η = (⌈K

L
⌉

−1)×(G−1)+K+L−1 (line 1). Then, it enumerates all possible
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Algorithm 3: Baseline
Input: Partition Pt(o) = {oi|1 ≤ i ≤ |Pt(o)|}, (M,K,L,G)

required for co-movement pattern
1 initialize a list H ← ∅ and

η ← (⌈K
L
⌉ − 1)× (G− 1) +K + L− 1

2 for each possible O ⊆ Pt(o) with |O| ≥ (M − 1) do
3 H.insert(⟨O, T ⟩) ◃ T = {t}
4 for each candidate pattern h ∈ H do
5 for each partition Pi(o) (t+ 1 ≤ i ≤ t+ η − 1) do
6 if (h.O ⊆ Pi ∧ (i−max(h.T )) = 1) or (h.O ⊆ Pi

∧ |Tl| ≥ L ∧ (i−max(h.T )) ≤ G) then
7 h.T ← h.T ∪ {i}
8 if |h.T | ≥ K ∧ |Tl| ≥ L then
9 output h

10 break

11 else
12 H.remove(h)

patterns O (O ⊆ P , |O| ≥ (M−1)), and inserts ⟨O, T ⟩ (T = {t})
into H (lines 2–3). In the sequel, for each candidate pattern h in H
and each next partition Pi(o) ((t+1) ≤ i ≤ (t+η−1)), the algo-
rithm uses Lemmas 5 and 6 to determine whether or not to remove
h (lines 4–6). If h satisfies the conditions of Lemmas 5 and 6, it is
removed from H (lines 11–12); otherwise, h.T ← h.T ∪ {i} (line
7), and the algorithm proceeds to verify the current pattern h (lines
8–10). If the current pattern h is valid, Baseline outputs h (line 9),
and breaks to process the next pattern (line 10).

Time Complexity and Storage Cost. Given a partition Pt(o),
the number of all possible patterns in Pt(o) is CM−1

|Pt(o)|+CM
|Pt(o)|+

... + C
|Pt(o)|
|Pt(o)| ≈ O(2|Pt(o)|). For each possible pattern, we use η

snapshots to verify it. Thus, the time complexity of Baseline is
O(η× 2|Pt(o)|), and the storage cost is O(2|Pt(o)|), which is huge.
For a large |Pt(o)|, Baseline cannot run due to the storage cost.

6.2 Fixed Length Bit Compression Method
To reduce the exponential time and storage costs of Baseline,

we present a fixed length bit compression method. The fixed
length bit string representation of a trajectory’s cluster membership
is defined below.

DEFINITION 13. (Fixed Length Bit String) Given a trajectory
oi in partition Pt(o), a fixed length bit string B[oi] is used to rep-
resent oi, where |B[oi]| = η, B[oi][j] = 1 (0 ≤ j ≤ (η − 1))
denotes that o and oi belong to the same cluster at time t+j, while
B[oi][j] = 0 indicates that o and oi belong to different clusters.

For instance, in Figs. 7 and 8, given the partition P3(o4) =
{o5, o6, o7, o8} at time 3, trajectory o5 is represented as B[o5] =
111111 (o4 and o5 belong to the same cluster at times 3, 4, 5, 6, 7,
and 8), and trajectory o8 is represented as B[o8] = 100000 (o4 and
o8 belong to the same cluster only at time 3).

Baseline stores every possible combination of trajectories in one
partition Pt(o). In contrast, each trajectory is now represented as
a bit string of length η. As a result, the storage cost is reduced
from (2|Pt(o)|) to O(η × |Pt(o)|). However, during verification,
we still need to determine whether each combination of trajectories
is a valid pattern. For every possible combination O of objects in
the partition Pt(o) (O ⊆ Pt(o)), we thus also use a fixed length bit
string B[O], where bit B[O][j] (0 ≤ j ≤ (η−1)) denotes whether
trajectories in O ∪ {o} belong to the same cluster at time t+ j.

Bit Operation. To compute the bit string for a set of trajectories
O = {ox|1 ≤ x ≤ m}, we use the bitwise AND operator on all

Algorithm 4: Fixed Length Bit Compression based Algo-
rithm (FBA)

Input: Partition Pt(o) = {oi|1 ≤ i ≤ |Pt(o)|}, (M,K,L,G)
required for co-movement pattern

1 a list C ← ∅ and η ← (⌈K
L
⌉ − 1)× (G− 1) +K + L− 1

2 for each object oi ∈ Pt(o) do
3 initialize a bit string B[oi]← 0 with length η
4 for each partition Pj(o) (t ≤ j ≤ (t+ η − 1)) do
5 if oi ∈ Pj(o) then
6 B[oi][j − t]← 1

7 if B[oi] satisfies (K,L,G) then
8 C.insert(oi)

9 S ← SubSet(C,M − 2) ◃ S.level = M − 2
10 while S ̸= ∅ and S.level ≤ |C| do
11 Sa ← ∅
12 for each pattern O ∈ S × C do
13 B[O]← &B[oj ](oj ∈ O)
14 if B[O] is valid then
15 output O
16 Sa ← Sa ∪ {O}

17 S ← Sa

B[ox] (ox ∈ O), i.e., B[O] = &B[ox] (ox ∈ O). This holds
because, B[O][j] = 1 iff ∀ox ∈ O (B[ox] = 1). In the example
in Fig. 8, B[{o5, o6}] = B[o5] & B[o6] = 110111, and B[{o5,
o6, o7}] = B[o5] & B[o6] & B[o7] = 110011. To verify whether
B[O] satisfies the (M,K,L,G) constraints, Lemmas 3 to 6 can be
adapted to use the bit strings similarly.

Candidate based Pattern Enumeration. In order to reduce the
exponential cost of enumeration in each partition Pt(o), we pro-
pose a two-step candidate set based method.

First, we find a candidate set C of trajectories whose bit strings
B[oi] (oi ∈ Pt(o)) satisfy the (K,L,G) constraints. For instance,
as illustrated in Fig. 8, given K = 4, L = 2, and G = 2, we can
get C = {o5, o6, o7}. This is because B[o8] does not satisfy the
(K,L,G) constraints.

Second, we enumerate all possible patterns O ⊆ C to find valid
ones. According to the Apriori Enumerator [10], we first enumer-
ate patterns O ⊆ C with |O| = 2, and then incrementally increase
the cardinality by one until |O| > |C|. In each iteration, for every
valid pattern O (i.e., B[O] satisfies the (K,L,G) constraints), we
proceed to evaluate patterns O × C, i.e., any candidate in C can
be inserted into O to yield a new pattern. However, instead of enu-
merating from |O| = 2, we directly enumerate from |O| = M −1,
saving the enumeration cost from 2 to M−1, obtaining substantial
savings when M is large.

For example, as depicted in Fig. 8, C = {o5, o6, o7} and M =
3. We first enumerate all patterns with cardinality 2, i.e., {o5, o6},
{o5, o7}, and {o6, o7}. In the second step, for valid pattern {o5, o6},
we increase its cardinality from 2 to 3 (i.e., we consider {o5, o6}×
C), resulting in {o5, o6, o7}. Note that, {o5, o6, o5} and {o5, o6, o6}
are omitted, since duplicated elements are not allowed in patterns.
In the third iteration, for valid pattern {o5, o6, o7}, we can stop
enumerating because of the termination condition (i.e., 4 > |C|).

Using the bit compression and candidate based pattern enumer-
ation techniques, we develop the Fixed Length Bit Compression
based Algorithm (FBA). The pseudo-code is presented in Algo-
rithm 4. It takes as inputs a partition Pt(o) and four (M,K,L,G)
constraints. First, FBA initializes an empty candidate list C, and
computes η (line 1). Then, it obtains the bit string B[oi] for each
oi in Pt(o) using η partitions Pj(o) (t ≤ j ≤ (t + η − 1)) (lines
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Figure 9: Bit Compression for Subtask of o4 in Fig. 2

2–6), and it inserts the valid oi whose B[oi] satisfies the (K,L,G)
constraints into C (lines 7–8). Next, the algorithm enumerates all
subsets of C in S with the subset’s cardinality (i.e., S.level) equal-
ing M − 2 (line 9). In the sequel, a while loop is used to incre-
mentally increase the level of subsets, and output the valid patterns
(lines 10–17). If S is empty or S.level > |C|, the while loop stops.

Time Complexity and Storage Cost. Given a partition Pt(o),
the bit compression reduces the storage cost from O(2|Pt(o)|) to
O(η × |Pt(o)|). Let R be the final pattern result set in Pt(o).
Using the candidate set C, the time complexity of pattern enumer-
ation is reduced from O(2|Pt(o)|) to O(|R|× |C|+CM−1

|C| ). Here,
O(CM−1

|C| ) is the cost of enumerating all patterns O from C with
|O| = M − 1 in the first step, and O(|R| × |C|) is the total enu-
meration cost of incrementally increasing the pattern cardinality.

6.3 Variable Length Bit Compression Method
Both Baseline and FBA find valid patterns every η snapshots,

resulting in the same snapshot being involved in multiple verifica-
tions. Consider the example in Fig. 2, where [S1, S6] is verified
for snapshot S1, [S2, S7] is verified for snapshot S2, and so on. In
this example, S2 is verified twice. To address this, we develop a
variable length bit compression method that verifies each snapshot
only once.

Variable Length Bit Compression. The partitioning method is
the same as that in the Baseline and Bit Compression based Algo-
rithm, i.e., a subtask is created for each trajectory. However, instead
of using a fixed length bit string for every trajectory in Pt(o) of a
specific time t, we use a variable length bit string to represent each
trajectory assigned to the subtask of o over all times.

DEFINITION 14. (Variable Length Bit String) Given a trajec-
tory oi assigned to the subtask of trajectory o, oi can be repre-
sented as a variable length bit string ⟨sti, eti, B[oi]⟩, where sti is
the start time, eti is the end time, and B[oi][t − sti] = 1 means
that o and oi belong to the same cluster at times t ∈ [sti, eti],
while B[oi][t− sti] = 0 indicates that o and oi belong to different
clusters at times t ∈ [sti, eti].

Fig. 9 shows the two different bit compression methods, where
Fig. 9(a) uses fixed length bit strings for each time, while Fig. 9(b)
uses variable length bit strings over all times. More specifically,
for the subtask of o4, o5 is represented as the variable length bit
string ⟨2, 8, 1111111⟩, while o5 is represented as two fixed length
bit strings (i.e., ‘111111’) at both times 2 and 3. Hence, the storage
cost is further reduced.

THEOREM 1. Given a subtask of trajectory o, three (K,L,G)
constraints, and the total number n of occurrences for trajectories
at any time t ≥ 1 of this subtask, the total storage cost for the
subtask is O(nG+L

L
) when using variable length bit strings, and

the total storage cost of the subtask is O(n × (⌈K
L
⌉ − 1) × (G −

1) +K + L− 1)) when using fixed length bit strings.

PROOF. The fixed length bit compression method needs O(η)
space to store the fixed length bit string for every occurrence of a
trajectory at any time t ≥ 1, where η = (⌈K

L
⌉ − 1) × (G − 1) +

K + L− 1. Hence, the storage cost is O(n× (⌈K
L
⌉ − 1)× (G−

1) +K + L− 1)).
With the variable length bit compression method, every occur-

rence of a trajectory at one particular time t ≥ 1 is represented
by a bit ‘1’ in an variable length bit string. For a variable length
bit string B that satisfies the (K,L,G) constraints, we can get that
no < n1

G
L

, where n0 is the number of ‘0’s in B and n1 is the
number of ‘1’s in B. Thus, given n ‘1’s in all the variable length
bit strings, the total storage cost is O(nG+L

L
).

Pattern Enumeration. To further reduce the cost of enumera-
tion, we use a candidate list C to only store the bit strings ⟨sti, eti,
B[oi]⟩ with maximal pattern time sequences.

DEFINITION 15. (Maximal Pattern Time Sequence) T is a
maximal pattern time sequence for a pattern O, iff (i) T satisfies
the (K,L,G) constraints, and (ii) no T ′ exists such that T ∪ T ′

also satisfies the (L,G,K) constraints.

Next, we develop a lemma to help obtain bit strings with maximal
pattern time sequences.

LEMMA 7. Given a variable length bit string ⟨sti, eti, B[oi]⟩
in the subtask of o that satisfies the (K, L, G) constraints, if B[oi][eti
+j] = 0 (1 ≤ j ≤ (G + 1)), then T = {t|t ∈ [sti, eti] ∧ B[t −
sti] = 1}) is a maximum pattern time sequence.

PROOF. The proof is simple due to Definition 15 and the G con-
straint, and thus, it is omitted.

For example, in Fig. 9, assume that objects o5, o6, and o7 do
not belong to the same cluster as o4 at future times 9, 10, and 11.
Given L = G = 2 and K = 4, then ⟨2, 8, B[o5] = 1111111⟩,
⟨3, 8, B[o6] = 110111⟩, and ⟨3, 8, B[o7] = 110011⟩ are three
maximal pattern time sequences.

After obtaining a new candidate bit string s that has a maximal
pattern time sequence, we first enumerate all possible patterns in
s ∪ C (C is the global candidate set), and then, we insert s into C.
The enumeration method is similar to that discussed in Section 6.2.
However, since the bit strings have variable lengths, a new lemma
is developed for enabling the punning of unqualified combinations.

LEMMA 8. Given m variable length bit strings ⟨sti, eti, B[oi]⟩
(1 ≤ i ≤ m) and a K constraint, if minm

i=1{eti} − maxmi=1{sti}
<K, we can prune the combination {oi|1 ≤ i ≤ m}.

PROOF. The proof is straightforward due to the K constraint,
and hence, it is omitted.

Based on Lemmas 7 and 8, we propose Variable Length Bit
Compression based Algorithm (VBA). The pseudo-code is shown
in Algorithm 5. VBA takes as inputs a partition Pt(o) = {oi|1 ≤
i ≤ |Pt(o)|}, a global hashmap H , a global candidate list C, and
(M,K,L,G) constraints. Initially, it initializes an empty local
candidate list Cl (line 1). Then, it updates (lines 2–12) or cre-
ates new variable length bit strings (lines 13–14) for trajectories in
Pt(o). It first updates the bit strings already in H . More specifi-
cally, for each object oi in the global H , if oi ∈ Pt(o), VBA ap-
pends a bit ‘1’ to the bit string H[oi].B, and removes oi from Pt(o)
(lines 3–5). Otherwise, it appends a bit ‘0’ to the bit string H[oi].B
(line 7). An isVaild function is called to determine whether the bit
string is a maximal pattern time sequence according to Lemma 7
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Algorithm 5: Variable Length Bit Compression based Al-
gorithm (VBA)

Input: Partition Pt(o) = {oi|1 ≤ i ≤ |Pt(o)|}, a global
hashmap H , a global candidate list C, (M,K,L,G)
required for co-movement pattern

1 a local candidate list Cl ← ∅
2 for each object oi ∈ H do
3 if oi ∈ Pt(o) then
4 append ‘1’ to the end of H[oi].B
5 remove oi from Pt(o)

6 else
7 append ‘0’ to the end of H[oi].B
8 tag← isVaild(H[oi].B)
9 if tag = 1 then

10 Cl.insert(oi)

11 else if tag = −1 then
12 H .delete(oi)

13 for each object oi ∈ Pt(o) do
14 H .insert(oi, ⟨t, ‘1’⟩)
15 for each object oi ∈ Cl do
16 L← ∅
17 for each object oj ∈ C (oi ̸= oj) do
18 if min{eti, etj} − max{sti, stj} ≥K then
19 L.insert(oj )

20 find and output valid patterns in L ∪ {oi} as in lines 10–18
of Algorithm 4 by applying Lemma 8

21 C ← C ∪ Cl

(line 8). If tag = 1 (i.e., H[oi].B is a maximal pattern time se-
quence), VBA inserts oi into Cl (lines 9–10). If tag = −1 (i.e.,
H[oi].B is an invalid pattern), it deletes oi from H (lines 11–12).
Subsequently, VBA processes trajectories that do not exist in the
global H . For each trajectory oi left in Pt(o), VBA inserts a new
entry (oi, ⟨t, ‘1’⟩) into H , where t is the start time and ‘1’ is the
current bit string of oi (lines 13–14). Thereafter, for each trajectory
oi in local candidate list Cl, VBA first filters the global candidate
list C using Lemma 8 to get a candidate list L (lines 16–19). Then,
it finds the valid patterns in L ∪ {oi} as in lines 9–17 of Algo-
rithm 4 by applying Lemma 8. Finally, the global candidate list C
is updated to C ∪ Cl (line 21).

Time Complexity and Storage Cost. According to Theorem 1,
variable length bit compression reduces the storage cost from O(nη)
to O(nG+L

L
). Here, n denotes the total number of occurrences for

trajectories in one subtask, and G+L
L

is much smaller than η. Next,
since the pattern enumeration methods of VBA and FBA are sim-
ilar, the two have similar time complexity. The only difference is
that, due to the use of maximal pattern time sequences, the candi-
date size of VBA is much smaller. However, the use of maximum
pattern time sequences comes with the cost that, the response time
of answering real-time co-movement pattern detection increases.
Thus, VBA trades latency for throughput.

7. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency and scalability of our

proposed framework and methods, and also include comparisons
with alternative methods. All experiments were conducted on a
cluster consisting of 11 nodes, where one node serves as the master
node, and the remaining nodes serve as slave nodes. Each node
is equipped with two 12-core processors (Intel Xeon E5-2620 v3
2.40GHz), 64GB RAM, and a Gigabit Ethernet. Each cluster node
runs Ubuntu 14.04.3 LTS and Flink 1.3.2. All system algorithms
were implemented in Java.

Table 2: Datasets Used in our Experiments
Attributes GeoLife Taxi Brinkhoff
# trajectories 18,670 20,151 10,000
# locations 24,876,978 189,419,934 23,906,131
# snapshots 92,645 502,559 97,241
Storage Size 1.5G 14G 1.7G

Table 3: Parameter Ranges and Default Values
Parameter Range
grid cell width lg 0.2%, 0.4%, 0.8%, 1.6%, 3.2%, 6.4%
distance threshold ϵ 0.02%, 0.04%, 0.06%, 0.08%, 0.10%, 0.12%
min objects M 5, 10, 15, 20, 25
min duration K 120, 150, 180, 210, 240
min local duration L 10, 20, 30, 40, 50
max gap G 10, 20, 30, 40, 50
ratio of objects Or 10%, 20%, 40%, 60%, 80%, 100%
machine number N 1, 2, 4, 6, 8, 10

Datasets: We use two real-life datasets and one synthetic dataset
to model streaming trajectories, as summarized in Table 2.

• GeoLife7: This dataset records the travel records of users
during a period of more than three years. The GPS records
are collected periodically, and 91% of the trajectories are
sampled every 1 to 5 seconds.
• Taxi8: This is a real trajectory dataset generated by taxis in

Hangzhou. Trajectories are segmented into trips, and each
resulting trajectory represents the trace of a taxi during a
month. The trajectories are sampled every 5 seconds.
• Brinkhoff9: This dataset is generated via the Brinkhoff gen-

erator [5]. The trajectories are generated on the real road
network of Las Vegas. An object position is generated every
second while an object moves through the road network with
random but reasonable direction and speed.

Comparison Methods: As this is the first study of real-time dis-
tributed co-movement pattern detection over streaming trajectories,
no competitors are available. Instead, we adapt the state-of-the-art
distributed co-movement pattern detection method [10] over his-
torical trajectories, so that it can serve as a baseline method. In
addition, we include comparisons between our clustering method
RJC (discussed in Section 5) and two existing clustering methods.

• SRJ [36] is the state-of-the-art distributed range join method
for streaming trajectories. We extend it to support DBSCAN
clustering similar as our method RJC.
• GDC [14] is a grid-based DBSCAN clustering approach for

a centralized environment. We extend it to work with Flink.

Parameters: In the experiments, we study the effect on per-
formance of several factors, as summarized in Table 3, where the
default values are shown in bold. In Table 3, lg and ϵ are set to a
percentage of the maximal distance of the whole dataset. In each
set of experiments, we vary one parameter while fixing the others
at their default values. Recall that, both ϵ and minPts are used to
control the density-based clustering, we vary only ϵ because sim-
ilar performance is observed for different values of minPts. We
fix minPts at 10.

Performance Metrics: We study both latency and throughput.
According to the definition of real-time co-movement pattern de-
tection, we need to find all the current co-movement patterns in
the snapshot set {S1, S2, · · · , St} at each timestamp t. Hence,
7https://research.microsoft.com/en-us/projects
8This is a proprietary dataset.
9https://iapg.jade-hs.de/personen/brinkhoff/generator/
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Figure 10: Clustering Performance vs. ϵ

the average response time for each snapshot is reported as the la-
tency, while the throughput is defined as the number of snapshots
processed per second.

7.1 Clustering Performance
We first explore the effect of the distance threshold ϵ and the

grid cell width lg on the range join based clustering algorithm RJC,
compared with the (adapted) existing methods SRJ and GDC.

Effect of ϵ. Fig. 10 depicts latency and throughput when in-
creasing ϵ from 0.02% to 0.12%. As expected, RJC achieves better
latency and throughput than SRJ, since Lemmas 1 and 2 make it
possible to avoid unnecessary verifications. In addition, RJC per-
forms better than GDC. This is because GDC uses ϵ (i.e., a small
value) to divide the data space, resulting in too many partitions. Fi-
nally, the latency increases and the throughput decreases with the
growth of ϵ due to the resulting larger search space.

Effect of lg . Fig. 11 plots the latency and throughput when in-
creasing lg from 0.1% to 6.4%. As observed, the clustering per-
formance (including latency and throughput) of RJC and SRJ first
improves and then drops as lg grows. The reason is that, if lg is too
small, the overhead of managing the many partitions is too high;
and if lg is too large, the punning ability decreases due to too many
locations in each partition. However, the clustering performance of
GDC stays stable as it does not depends on lg .

7.2 Scalability
Next, we investigate the scalability of our pattern detection frame-

work, where RJC is used for clustering, and three algorithms BA,
FBA, and VBA (covered in Section 6) are used for pattern enu-
meration. This yields three corresponding methods B, F and V for
pattern detection. In this set of and remaining experiments, only
Taxi and Brinkhoff are employed due to similar performance on
Geolife and the space limitation.

Effect of Or . Fig. 12 shows the latency and throughput when
Or ranges from 10% to 100%. Here, the bars indicate the average
pattern detection latency (including clustering and enumeration),
while the curve denotes the average cluster size. The first observa-
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Figure 12: Pattern Detection Performance vs. Or

tion is that, B can only run on small datasets, i.e., when Or ≤ 60%.
This is because, the cost of its enumeration method BA is O(2n),
where n is the average cluster size that increases with Or . Second,
V and F can run on large datasets, and F achieves the best latency,
while V achieves the best throughput. The reason is that, the costs
of their enumeration methods VBA and FBA are linear w.r.t. the
average cluster size, and VBA utilizes the variable bit compression
and maximal pattern time sequence techniques to trade latency for
throughput. As expected, the performance drops as Or grows, due
to the larger search space.

Effect of ϵ. Fig. 13 illustrates the latency and throughput when ϵ
ranges from 0.02% to 0.12%. As expected, the performance drops
when ϵ grows. This is because, as ϵ ascends, the range join cost
also increases due to the larger search space, and the enumeration
cost grows due to the increasing average cluster size. Note that,
the average cluster size is omitted in the remaining experiments,
because it is not affected by other parameters.

Effect of N . Fig. 14 plots the latency and throughput when N
ranges from 1 to 10. As expected, the average latency drops and
the throughput increases as the number of nodes grows.
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Figure 14: Pattern Detection Performance vs. N

7.3 Pattern Enumeration Performance
Next, we consider the effects of the constraints M , K, L, and G

on the performance of pattern enumeration methods VBA and FBA.
Here, BA is omitted as it cannot run on large datasets, and cluster-
ing is omitted as its performance is not affected by the constraints.
Fig. 15 shows the latency and throughput when increasing M , K,
L, and G on Brinkhoff. As expected, VBA has better throughput
than FBA, while FBA has better latency. In addition, the average
latency decreases (while the throughput increases) as M and K or
L grow, as fewer valid candidates are generated or the pruning abil-
ity of Lemma 5 increases. However, the average latency increases
(while the throughput decreases) as G grows. The reason is that, as
G grows, more valid patterns are generated.

7.4 Summary
We can conclude that for clustering, our method RJC is more

efficient on both latency and throughput when compared with the
existing methods SRJ and GDC. When considering pattern enumer-
ation, the scalability of our methods FBA and VBA are better than
that of BA. In addition, FBA has the best latency, while VBA has
the best throughput. The overall finding is that the ICPE framework
and its corresponding methods are scalable, and are able to achieve
low latency and high throughput. In addition, we recommend FBA
if the throughput achieved is able to keep up with the incoming
workload, and we recommend VBA if this is necessary to keep up
with the incoming workload or if the higher latency is not critical.
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Figure 15: Pattern Enumeration Performance vs. M , K, K, G

8. CONCLUSIONS
In this paper, we investigate real-time distributed co-movement

pattern detection over streaming trajectories, which is useful in fu-
ture movement prediction, trajectory compression, and a variety
of location-based services. We develop a Flink-based framework,
called ICPE. Flink is used because of its suitability for stream pro-
cessing and its high efficiency and reliability. The framework en-
compasses two phases, i.e., clustering and pattern enumeration. To
accelerate the clustering, we utilize a GR-index based range join,
together with effective pruning techniques. To support efficient pat-
tern enumeration, an id-based partitioning method, two bit com-
pression techniques, and candidate based enumeration are utilized
to reduce the storage and processing costs from exponential to lin-
ear. Extensive experiments using both real and synthetic datasets
suggest that the proposed framework and its constituent data struc-
tures and algorithms are efficient and scalable. It is observed that,
ICPE can achieve low latency and high throughput, and thus, it
can support real-time co-movement pattern detection over stream-
ing trajectories. In future research, it is of interest to extend ICPE
to support the detection of additional types of advanced patterns.
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