13,782 research outputs found

    A Note on Shapleys Convex Measure Games

    Get PDF
    L. S. Shapley, in his paper Cores of Convex Games, introduces Convex Measure Games, those that are induced by a convex function on R, acting over a measure on the coalitions. But in a note he states that if this function is a function of several variables, then convexity for the function does not imply convexity of the game or even superadditivity. We prove that if the function is directionally convex, the game is convex, and conversely, any convex game can be induced by a directionally convex function acting over measures on the coalitions, with as many measures as players.supermodularity, multilinear extension, convex cooperative games, directional convexity

    A unified approach to the calculus of variations on time scales

    Full text link
    In this work we propose a new and more general approach to the calculus of variations on time scales that allows to obtain, as particular cases, both delta and nabla results. More precisely, we pose the problem of minimizing or maximizing the composition of delta and nabla integrals with Lagrangians that involve directional derivatives. Unified Euler-Lagrange necessary optimality conditions, as well as sufficient conditions under appropriate convexity assumptions, are proved. We illustrate presented results with simple examples.Comment: 7 pages, presented at the 2010 Chinese Control and Decision Conference, Xuzhou, China, May 26-28, 201

    A Minty variational principle for set optimization

    Full text link
    Extremal problems are studied involving an objective function with values in (order) complete lattices of sets generated by so called set relations. Contrary to the popular paradigm in vector optimization, the solution concept for such problems, introduced by F. Heyde and A. L\"ohne, comprises the attainment of the infimum as well as a minimality property. The main result is a Minty type variational inequality for set optimization problems which provides a sufficient optimality condition under lower semicontinuity assumptions and a necessary condition under appropriate generalized convexity assumptions. The variational inequality is based on a new Dini directional derivative for set-valued functions which is defined in terms of a "lattice difference quotient": A residual operation in a lattice of sets replaces the inverse addition in linear spaces. Relationships to families of scalar problems are pointed out and used for proofs: The appearance of improper scalarizations poses a major difficulty which is dealt with by extending known scalar results such as Diewert's theorem to improper functions

    A partial differential equation for the strictly quasiconvex envelope

    Full text link
    In a series of papers Barron, Goebel, and Jensen studied Partial Differential Equations (PDE)s for quasiconvex (QC) functions \cite{barron2012functions, barron2012quasiconvex,barron2013quasiconvex,barron2013uniqueness}. To overcome the lack of uniqueness for the QC PDE, they introduced a regularization: a PDE for \e-robust QC functions, which is well-posed. Building on this work, we introduce a stronger regularization which is amenable to numerical approximation. We build convergent finite difference approximations, comparing the QC envelope and the two regularization. Solutions of this PDE are strictly convex, and smoother than the robust-QC functions.Comment: 20 pages, 6 figures, 1 tabl
    corecore