43,397 research outputs found

    Improving Macrocell - Small Cell Coexistence through Adaptive Interference Draining

    Full text link
    The deployment of underlay small base stations (SBSs) is expected to significantly boost the spectrum efficiency and the coverage of next-generation cellular networks. However, the coexistence of SBSs underlaid to an existing macro-cellular network faces important challenges, notably in terms of spectrum sharing and interference management. In this paper, we propose a novel game-theoretic model that enables the SBSs to optimize their transmission rates by making decisions on the resource occupation jointly in the frequency and spatial domains. This procedure, known as interference draining, is performed among cooperative SBSs and allows to drastically reduce the interference experienced by both macro- and small cell users. At the macrocell side, we consider a modified water-filling policy for the power allocation that allows each macrocell user (MUE) to focus the transmissions on the degrees of freedom over which the MUE experiences the best channel and interference conditions. This approach not only represents an effective way to decrease the received interference at the MUEs but also grants the SBSs tier additional transmission opportunities and allows for a more agile interference management. Simulation results show that the proposed approach yields significant gains at both macrocell and small cell tiers, in terms of average achievable rate per user, reaching up to 37%, relative to the non-cooperative case, for a network with 150 MUEs and 200 SBSs

    Flexible Backhaul Design and Degrees of Freedom for Linear Interference Networks

    Full text link
    The considered problem is that of maximizing the degrees of freedom (DoF) in cellular downlink, under a backhaul load constraint that limits the number of messages that can be delivered from a centralized controller to the base station transmitters. A linear interference channel model is considered, where each transmitter is connected to the receiver having the same index as well as one succeeding receiver. The backhaul load is defined as the sum of all the messages available at all the transmitters normalized by the number of users. When the backhaul load is constrained to an integer level B, the asymptotic per user DoF is shown to equal (4B-1)/(4B), and it is shown that the optimal assignment of messages to transmitters is asymmetric and satisfies a local cooperation constraint and that the optimal coding scheme relies only on zero-forcing transmit beamforming. Finally, an extension of the presented coding scheme is shown to apply for more general locally connected and two-dimensional networks.Comment: Submitted to IEEE International Symposium on Information Theory (ISIT 2014
    corecore