168 research outputs found

    On the security of machine learning in malware C & C detection:a survey

    Get PDF
    One of the main challenges in security today is defending against malware attacks. As trends and anecdotal evidence show, preventing these attacks, regardless of their indiscriminate or targeted nature, has proven difficult: intrusions happen and devices get compromised, even at security-conscious organizations. As a consequence, an alternative line of work has focused on detecting and disrupting the individual steps that follow an initial compromise and are essential for the successful progression of the attack. In particular, several approaches and techniques have been proposed to identify the command and control (C&C) channel that a compromised system establishes to communicate with its controller. A major oversight of many of these detection techniques is the design's resilience to evasion attempts by the well-motivated attacker. C&C detection techniques make widespread use of a machine learning (ML) component. Therefore, to analyze the evasion resilience of these detection techniques, we first systematize works in the field of C&C detection and then, using existing models from the literature, go on to systematize attacks against the ML components used in these approaches

    PECAN: A Deterministic Certified Defense Against Backdoor Attacks

    Full text link
    Neural networks are vulnerable to backdoor poisoning attacks, where the attackers maliciously poison the training set and insert triggers into the test input to change the prediction of the victim model. Existing defenses for backdoor attacks either provide no formal guarantees or come with expensive-to-compute and ineffective probabilistic guarantees. We present PECAN, an efficient and certified approach for defending against backdoor attacks. The key insight powering PECAN is to apply off-the-shelf test-time evasion certification techniques on a set of neural networks trained on disjoint partitions of the data. We evaluate PECAN on image classification and malware detection datasets. Our results demonstrate that PECAN can (1) significantly outperform the state-of-the-art certified backdoor defense, both in defense strength and efficiency, and (2) on real back-door attacks, PECAN can reduce attack success rate by order of magnitude when compared to a range of baselines from the literature

    Honest Score Client Selection Scheme: Preventing Federated Learning Label Flipping Attacks in Non-IID Scenarios

    Full text link
    Federated Learning (FL) is a promising technology that enables multiple actors to build a joint model without sharing their raw data. The distributed nature makes FL vulnerable to various poisoning attacks, including model poisoning attacks and data poisoning attacks. Today, many byzantine-resilient FL methods have been introduced to mitigate the model poisoning attack, while the effectiveness when defending against data poisoning attacks still remains unclear. In this paper, we focus on the most representative data poisoning attack - "label flipping attack" and monitor its effectiveness when attacking the existing FL methods. The results show that the existing FL methods perform similarly in Independent and identically distributed (IID) settings but fail to maintain the model robustness in Non-IID settings. To mitigate the weaknesses of existing FL methods in Non-IID scenarios, we introduce the Honest Score Client Selection (HSCS) scheme and the corresponding HSCSFL framework. In the HSCSFL, The server collects a clean dataset for evaluation. Under each iteration, the server collects the gradients from clients and then perform HSCS to select aggregation candidates. The server first evaluates the performance of each class of the global model and generates the corresponding risk vector to indicate which class could be potentially attacked. Similarly, the server evaluates the client's model and records the performance of each class as the accuracy vector. The dot product of each client's accuracy vector and global risk vector is generated as the client's host score; only the top p\% host score clients are included in the following aggregation. Finally, server aggregates the gradients and uses the outcome to update the global model. The comprehensive experimental results show our HSCSFL effectively enhances the FL robustness and defends against the "label flipping attack.

    Federated Learning for Malware Detection in IoT Devices

    Full text link
    The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area

    Federated Learning for Malware Detection in IoT Devices

    Full text link
    The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area
    • …
    corecore