41 research outputs found

    On Deducing Conditional Independence from d-Separation in Causal Graphs with Feedback (Research Note)

    Full text link
    Pearl and Dechter (1996) claimed that the d-separation criterion for conditional independence in acyclic causal networks also applies to networks of discrete variables that have feedback cycles, provided that the variables of the system are uniquely determined by the random disturbances. I show by example that this is not true in general. Some condition stronger than uniqueness is needed, such as the existence of a causal dynamics guaranteed to lead to the unique solution

    Discovering Cyclic Causal Models with Latent Variables: A General SAT-Based Procedure

    Get PDF
    We present a very general approach to learning the structure of causal models based on d-separation constraints, obtained from any given set of overlapping passive observational or experimental data sets. The procedure allows for both directed cycles (feedback loops) and the presence of latent variables. Our approach is based on a logical representation of causal pathways, which permits the integration of quite general background knowledge, and inference is performed using a Boolean satisfiability (SAT) solver. The procedure is complete in that it exhausts the available information on whether any given edge can be determined to be present or absent, and returns "unknown" otherwise. Many existing constraint-based causal discovery algorithms can be seen as special cases, tailored to circumstances in which one or more restricting assumptions apply. Simulations illustrate the effect of these assumptions on discovery and how the present algorithm scales.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Causal Discovery for Relational Domains: Representation, Reasoning, and Learning

    Get PDF
    Many domains are currently experiencing the growing trend to record and analyze massive, observational data sets with increasing complexity. A commonly made claim is that these data sets hold potential to transform their corresponding domains by providing previously unknown or unexpected explanations and enabling informed decision-making. However, only knowledge of the underlying causal generative process, as opposed to knowledge of associational patterns, can support such tasks. Most methods for traditional causal discovery—the development of algorithms that learn causal structure from observational data—are restricted to representations that require limiting assumptions on the form of the data. Causal discovery has almost exclusively been applied to directed graphical models of propositional data that assume a single type of entity with independence among instances. However, most real-world domains are characterized by systems that involve complex interactions among multiple types of entities. Many state-of-the-art methods in statistics and machine learning that address such complex systems focus on learning associational models, and they are oftentimes mistakenly interpreted as causal. The intersection between causal discovery and machine learning in complex systems is small. The primary objective of this thesis is to extend causal discovery to such complex systems. Specifically, I formalize a relational representation and model that can express the causal and probabilistic dependencies among the attributes of interacting, heterogeneous entities. I show that the traditional method for reasoning about statistical independence from model structure fails to accurately derive conditional independence facts from relational models. I introduce a new theory—relational d-separation—and a novel, lifted representation—the abstract ground graph—that supports a sound, complete, and computationally efficient method for algorithmically deriving conditional independencies from probabilistic models of relational data. The abstract ground graph representation also presents causal implications that enable the detection of causal direction for bivariate relational dependencies without parametric assumptions. I leverage these implications and the theoretical framework of relational d-separation to develop a sound and complete algorithm—the relational causal discovery (RCD) algorithm—that learns causal structure from relational data

    Establishing Markov Equivalence in Cyclic Directed Graphs

    Full text link
    We present a new, efficient procedure to establish Markov equivalence between directed graphs that may or may not contain cycles under the \textit{d}-separation criterion. It is based on the Cyclic Equivalence Theorem (CET) in the seminal works on cyclic models by Thomas Richardson in the mid '90s, but now rephrased from an ancestral perspective. The resulting characterization leads to a procedure for establishing Markov equivalence between graphs that no longer requires tests for d-separation, leading to a significantly reduced algorithmic complexity. The conceptually simplified characterization may help to reinvigorate theoretical research towards sound and complete cyclic discovery in the presence of latent confounders. This version includes a correction to rule (iv) in Theorem 1, and the subsequent adjustment in part 2 of Algorithm 2.Comment: Correction to original version published at UAI-2023. Includes additional experimental results and extended proof details in supplemen

    Causal Confusion in Imitation Learning

    Get PDF
    Behavioral cloning reduces policy learning to supervised learning by training a discriminative model to predict expert actions given observations. Such discriminative models are non-causal: the training procedure is unaware of the causal structure of the interaction between the expert and the environment. We point out that ignoring causality is particularly damaging because of the distributional shift in imitation learning. In particular, it leads to a counter-intuitive "causal misidentification" phenomenon: access to more information can yield worse performance. We investigate how this problem arises, and propose a solution to combat it through targeted interventions---either environment interaction or expert queries---to determine the correct causal model. We show that causal misidentification occurs in several benchmark control domains as well as realistic driving settings, and validate our solution against DAgger and other baselines and ablations.Comment: Published at NeurIPS 2019 9 pages, plus references and appendice

    Markov Properties for Graphical Models with Cycles and Latent Variables

    Get PDF
    We investigate probabilistic graphical models that allow for both cycles and latent variables. For this we introduce directed graphs with hyperedges (HEDGes), generalizing and combining both marginalized directed acyclic graphs (mDAGs) that can model latent (dependent) variables, and directed mixed graphs (DMGs) that can model cycles. We define and analyse several different Markov properties that relate the graphical structure of a HEDG with a probability distribution on a corresponding product space over the set of nodes, for example factorization properties, structural equations properties, ordered/local/global Markov properties, and marginal versions of these. The various Markov properties for HEDGes are in general not equivalent to each other when cycles or hyperedges are present, in contrast with the simpler case of directed acyclic graphical (DAG) models (also known as Bayesian networks). We show how the Markov properties for HEDGes - and thus the corresponding graphical Markov models - are logically related to each other.Comment: 131 page

    Joint Causal Inference from Multiple Contexts

    Get PDF
    The gold standard for discovering causal relations is by means of experimentation. Over the last decades, alternative methods have been proposed that can infer causal relations between variables from certain statistical patterns in purely observational data. We introduce Joint Causal Inference (JCI), a novel approach to causal discovery from multiple data sets from different contexts that elegantly unifies both approaches. JCI is a causal modeling framework rather than a specific algorithm, and it can be implemented using any causal discovery algorithm that can take into account certain background knowledge. JCI can deal with different types of interventions (e.g., perfect, imperfect, stochastic, etc.) in a unified fashion, and does not require knowledge of intervention targets or types in case of interventional data. We explain how several well-known causal discovery algorithms can be seen as addressing special cases of the JCI framework, and we also propose novel implementations that extend existing causal discovery methods for purely observational data to the JCI setting. We evaluate different JCI implementations on synthetic data and on flow cytometry protein expression data and conclude that JCI implementations can considerably outperform state-of-the-art causal discovery algorithms.Comment: Final version, as published by JML

    On the Foundations of Cycles in Bayesian Networks

    Full text link
    Bayesian networks (BNs) are a probabilistic graphical model widely used for representing expert knowledge and reasoning under uncertainty. Traditionally, they are based on directed acyclic graphs that capture dependencies between random variables. However, directed cycles can naturally arise when cross-dependencies between random variables exist, e.g., for modeling feedback loops. Existing methods to deal with such cross-dependencies usually rely on reductions to BNs without cycles. These approaches are fragile to generalize, since their justifications are intermingled with additional knowledge about the application context. In this paper, we present a foundational study regarding semantics for cyclic BNs that are generic and conservatively extend the cycle-free setting. First, we propose constraint-based semantics that specify requirements for full joint distributions over a BN to be consistent with the local conditional probabilities and independencies. Second, two kinds of limit semantics that formalize infinite unfolding approaches are introduced and shown to be computable by a Markov chain construction.Comment: Full version with an appendix containing the proof
    corecore