16 research outputs found

    Geometric lattice structure of covering and its application to attribute reduction through matroids

    Full text link
    The reduction of covering decision systems is an important problem in data mining, and covering-based rough sets serve as an efficient technique to process the problem. Geometric lattices have been widely used in many fields, especially greedy algorithm design which plays an important role in the reduction problems. Therefore, it is meaningful to combine coverings with geometric lattices to solve the optimization problems. In this paper, we obtain geometric lattices from coverings through matroids and then apply them to the issue of attribute reduction. First, a geometric lattice structure of a covering is constructed through transversal matroids. Then its atoms are studied and used to describe the lattice. Second, considering that all the closed sets of a finite matroid form a geometric lattice, we propose a dependence space through matroids and study the attribute reduction issues of the space, which realizes the application of geometric lattices to attribute reduction. Furthermore, a special type of information system is taken as an example to illustrate the application. In a word, this work points out an interesting view, namely, geometric lattice to study the attribute reduction issues of information systems

    Covering rough sets based on neighborhoods: An approach without using neighborhoods

    Get PDF
    Rough set theory, a mathematical tool to deal with inexact or uncertain knowledge in information systems, has originally described the indiscernibility of elements by equivalence relations. Covering rough sets are a natural extension of classical rough sets by relaxing the partitions arising from equivalence relations to coverings. Recently, some topological concepts such as neighborhood have been applied to covering rough sets. In this paper, we further investigate the covering rough sets based on neighborhoods by approximation operations. We show that the upper approximation based on neighborhoods can be defined equivalently without using neighborhoods. To analyze the coverings themselves, we introduce unary and composition operations on coverings. A notion of homomorphismis provided to relate two covering approximation spaces. We also examine the properties of approximations preserved by the operations and homomorphisms, respectively.Comment: 13 pages; to appear in International Journal of Approximate Reasonin

    Geometric lattice structure of covering-based rough sets through matroids

    Get PDF
    Covering-based rough set theory is a useful tool to deal with inexact, uncertain or vague knowledge in information systems. Geometric lattice has widely used in diverse fields, especially search algorithm design which plays important role in covering reductions. In this paper, we construct four geometric lattice structures of covering-based rough sets through matroids, and compare their relationships. First, a geometric lattice structure of covering-based rough sets is established through the transversal matroid induced by the covering, and its characteristics including atoms, modular elements and modular pairs are studied. We also construct a one-to-one correspondence between this type of geometric lattices and transversal matroids in the context of covering-based rough sets. Second, sufficient and necessary conditions for three types of covering upper approximation operators to be closure operators of matroids are presented. We exhibit three types of matroids through closure axioms, and then obtain three geometric lattice structures of covering-based rough sets. Third, these four geometric lattice structures are compared. Some core concepts such as reducible elements in covering-based rough sets are investigated with geometric lattices. In a word, this work points out an interesting view, namely geometric lattice, to study covering-based rough sets

    The structure of oppositions in rough set theory and formal concept analysis - Toward a new bridge between the two settings

    Get PDF
    Rough set theory (RST) and formal concept analysis (FCA) are two formal settings in information management, which have found applications in learning and in data mining. Both rely on a binary relation. FCA starts with a formal context, which is a relation linking a set of objects with their properties. Besides, a rough set is a pair of lower and upper approximations of a set of objects induced by an indistinguishability relation; in the simplest case, this relation expresses that two objects are indistinguishable because their known properties are exactly the same. It has been recently noticed, with different concerns, that any binary relation on a Cartesian product of two possibly equal sets induces a cube of oppositions, which extends the classical Aristotelian square of oppositions structure, and has remarkable properties. Indeed, a relation applied to a given subset gives birth to four subsets, and to their complements, that can be organized into a cube. These four subsets are nothing but the usual image of the subset by the relation, together with similar expressions where the subset and / or the relation are replaced by their complements. The eight subsets corresponding to the vertices of the cube can receive remarkable interpretations, both in the RST and the FCA settings. One facet of the cube corresponds to the core of RST, while basic FCA operators are found on another facet. The proposed approach both provides an extended view of RST and FCA, and suggests a unified view of both of them. © 2014 Springer International Publishing
    corecore