4,276 research outputs found

    Synchronization of Nonlinear Circuits in Dynamic Electrical Networks with General Topologies

    Full text link
    Sufficient conditions are derived for global asymptotic synchronization in a system of identical nonlinear electrical circuits coupled through linear time-invariant (LTI) electrical networks. In particular, the conditions we derive apply to settings where: i) the nonlinear circuits are composed of a parallel combination of passive LTI circuit elements and a nonlinear voltage-dependent current source with finite gain; and ii) a collection of these circuits are coupled through either uniform or homogeneous LTI electrical networks. Uniform electrical networks have identical per-unit-length impedances. Homogeneous electrical networks are characterized by having the same effective impedance between any two terminals with the others open circuited. Synchronization in these networks is guaranteed by ensuring the stability of an equivalent coordinate-transformed differential system that emphasizes signal differences. The applicability of the synchronization conditions to this broad class of networks follows from leveraging recent results on structural and spectral properties of Kron reduction---a model-reduction procedure that isolates the interactions of the nonlinear circuits in the network. The validity of the analytical results is demonstrated with simulations in networks of coupled Chua's circuits

    (Non)local and (non)linear free boundary problems

    Get PDF
    We discuss some recent developments in the theory of free boundary problems, as obtained in a series of papers in collaboration with L. Caffarelli, A. Karakhanyan and O. Savin. The main feature of these new free boundary problems is that they deeply take into account nonlinear energy superpositions and possibly nonlocal functionals. The nonlocal parameter interpolates between volume and perimeter functionals, and so it can be seen as a fractional counterpart of classical free boundary problems, in which the bulk energy presents nonlocal aspects. The nonlinear term in the energy superposition takes into account the possibility of modeling different regimes in terms of different energy levels and provides a lack of scale invariance, which in turn may cause a structural instability of minimizers that may vary from one scale to another
    • …
    corecore