Sufficient conditions are derived for global asymptotic synchronization in a
system of identical nonlinear electrical circuits coupled through linear
time-invariant (LTI) electrical networks. In particular, the conditions we
derive apply to settings where: i) the nonlinear circuits are composed of a
parallel combination of passive LTI circuit elements and a nonlinear
voltage-dependent current source with finite gain; and ii) a collection of
these circuits are coupled through either uniform or homogeneous LTI electrical
networks. Uniform electrical networks have identical per-unit-length
impedances. Homogeneous electrical networks are characterized by having the
same effective impedance between any two terminals with the others open
circuited. Synchronization in these networks is guaranteed by ensuring the
stability of an equivalent coordinate-transformed differential system that
emphasizes signal differences. The applicability of the synchronization
conditions to this broad class of networks follows from leveraging recent
results on structural and spectral properties of Kron reduction---a
model-reduction procedure that isolates the interactions of the nonlinear
circuits in the network. The validity of the analytical results is demonstrated
with simulations in networks of coupled Chua's circuits