5,804 research outputs found

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible

    Interactive product browsing and configuration using remote augmented reality sales services

    Get PDF
    Real-time remote sales assistance is an underdeveloped component of online sales services. Solutions involving web page text chat, telephony and video support prove problematic when seeking to remotely guide customers in their sales processes, especially with configurations of physically complex artefacts. Recently, there has been great interest in the application of virtual worlds and augmented reality to create synthetic environments for remote sales of physical artefacts. However, there is a lack of analysis and development of appropriate software services to support these processes. We extend our previous work with the detailed design of configuration context services to support the management of an interactive sales session using augmented reality. We detail the context and configuration services required, presenting a novel data service streaming configuration information to the vendor for business analytics. We expect that a fully implemented configuration management service, based on our design, will improve the remote sales experience for both customers and vendors alike via analysis of the streamed information

    eSciDoc Infrastructure: a Fedora-based e-Research Framework

    Get PDF
    4th International Conference on Open RepositoriesThis presentation was part of the session : Fedora User Group PresentationsDate: 2009-05-20 03:30 PM – 05:00 PMeSciDoc is the open-source e-Research environment jointly created by the German Max Planck Society and FIZ Karlsruhe. It consists of a generic set of basic services ("eSciDoc Infrastructure") and various applications built on top of this infrastructure ("eSciDoc Solutions"). This presentation will focus on the eSciDoc Infrastructure, highlight the differences to the underlying Fedora repository, and demonstrate its powerful und application-centric programming model. In the end of 2008, we released version 1.0 of the eSciDoc Infrastructure. Digital Repositories undergo yet again a substantial change of paradigm. While they started several years ago with a library perspective, mainly focusing on publications, they are now becoming more and more a commodity tool for the workaday life of researchers. Quite often the repository itself is just a background service, providing storage, persistent identification, preservation, and discovery of the content. It is hidden from the end-user by means of specialized applications or services. Fedora's approach of providing a repository architecture rather than an end-user tool accommodates well to this evolution. eSciDoc, from the start of the project nearly five years ago, has emphasized this design pattern by separating backend services (eSciDoc Infrastructure) and front-end applications (eSciDoc Solutions)

    Interprocedural Type Specialization of JavaScript Programs Without Type Analysis

    Get PDF
    Dynamically typed programming languages such as Python and JavaScript defer type checking to run time. VM implementations can improve performance by eliminating redundant dynamic type checks. However, type inference analyses are often costly and involve tradeoffs between compilation time and resulting precision. This has lead to the creation of increasingly complex multi-tiered VM architectures. Lazy basic block versioning is a simple JIT compilation technique which effectively removes redundant type checks from critical code paths. This novel approach lazily generates type-specialized versions of basic blocks on-the-fly while propagating context-dependent type information. This approach does not require the use of costly program analyses, is not restricted by the precision limitations of traditional type analyses. This paper extends lazy basic block versioning to propagate type information interprocedurally, across function call boundaries. Our implementation in a JavaScript JIT compiler shows that across 26 benchmarks, interprocedural basic block versioning eliminates more type tag tests on average than what is achievable with static type analysis without resorting to code transformations. On average, 94.3% of type tag tests are eliminated, yielding speedups of up to 56%. We also show that our implementation is able to outperform Truffle/JS on several benchmarks, both in terms of execution time and compilation time.Comment: 10 pages, 10 figures, submitted to CGO 201

    From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems

    Full text link
    At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of (often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems (also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commercial workflow products cannot support the highly dynamic activities found both in the design stages of product development and in rapidly evolving workflow definitions. The integration of Product Data Management with Workflow Management can provide support for product development from initial CAD/CAM collaborative design through to the support and optimisation of production workflow activities. This paper investigates this integration and proposes a philosophy for the support of product data throughout the full development and production lifecycle and demonstrates its usefulness in the construction of CMS detectors.Comment: 18 pages, 13 figure
    • …
    corecore