
eSciDoc Infrastructure:
a Fedora-based e-Research Framework

Frank Schwichtenberg, Matthias Razum

FIZ Karlsruhe, Hermann-von-Helmholtz-Platz 1,
76344 Eggenstein-Leopoldshafen, Germany

{firstname.surname}@fiz-karlsruhe.de

Introduction

eSciDoc is the open-source e-Research environment jointly created by the German
Max Planck Society and FIZ Karlsruhe. It consists of a generic set of basic services
(“eSciDoc Infrastructure”) and various applications built on top of this infrastructure
(“eSciDoc Solutions”). This presentation will focus on the eSciDoc Infrastructure,
highlight the differences to the underlying Fedora repository, and demonstrate its
powerful und application-centric programming model. In the end of 2008, we released
version 1.0 of the eSciDoc Infrastructure.

Digital Repositories undergo yet again a substantial change of paradigm. While
they started several years ago with a library perspective, mainly focusing on
publications, they are now becoming more and more a commodity tool for the
workaday life of researchers. Quite often the repository itself is just a background
service, providing storage, persistent identification, preservation, and discovery of the
content. It is hidden from the end-user by means of specialized applications or
services. Fedora’s approach of providing a repository architecture rather than an end-
user tool accommodates well to this evolution. eSciDoc, from the start of the project
nearly five years ago, has emphasized this design pattern by separating backend
services (eSciDoc Infrastructure) and front-end applications (eSciDoc Solutions).

Differences between Fedora and eSciDoc

Fedora provides a very generic set of functionalities, addressing the needs of
various communities and use cases. On the other hand, this means that it only
provides low-level functionality, requiring developers to spend time implementing
high-level services. eSciDoc tries to fill that gap by adding these high-level services
on top of Fedora while hiding some of the more complex aspects of Fedora, thus
increasing the productivity of developers. However, this advantage contrasts with a
reduction of flexibility.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4724612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Frank Schwichtenberg, Matthias Razum

1. Datastreams and Object Patterns

A Fedora Object consists of several datastreams, which contain either XML or
binary content. The repository developer has to define the layout and allowed contents
for each datastream – the ‘content model’. Here lies one of the challenges to start with
Fedora, even for simpler use cases. Therefore, eSciDoc introduced ‘object patterns’
for basic object types: items and containers (see figure 1). For both object patterns,
the layout, naming, and allowed content is predefined. eSciDoc objects are therefore
less flexible, but simplify data modeling. Still, they provide flexibility where needed
(e.g. storing metadata records). Our experience shows that this model accommodates
for most use cases.

Figure 1: eSciDoc Data Model, showing the two object patterns ‘item’ and
‘container’. Items may have one or more components, which hold the different

manifestations of the content.

The item pattern represents a single entity with possibly multiple manifestations.
The container pattern aggregates items or other containers. Both support multiple
arbitrary metadata records, object relations (within and outside of eSciDoc), and some
logistic and lifecycle properties. All the information is stored in one or more Fedora
objects, following the ‘atomistic’ content model paradigm. However, the user will
only work with a single eSciDoc object. All the complex work is done behind the
scenes by the eSciDoc Infrastructure.

2. Object Lifecycle

Both items and containers implement a basic lifecycle in the form of a simple
workflow. Each eSciDoc object derived from one of the object patterns is created in
status ‘pending’. Submitting the object forwards it to the quality assurance stage, from
where it can be either send back to the creator for revision or be released (i.e. made
publicly accessible). In rare cases, released items need to be withdrawn (e.g., because
of copyright infringements), which is the last status in the lifecycle. For each status,

eSciDoc Infrastructure:
a Fedora-based e-Research Framework 3

different access rights (based on policies, roles, and scopes) may be defined. Moving
objects from one status to the next is as easy as invoking a single method.

3. Versioning

eSciDoc extends Fedora’s versioning approach. Because of the atomistic content
model, a single eSciDoc object may in fact be a graph of Fedora objects. However,
the user conceives eSciDoc objects as one entity and expects what we call ‘whole-
object versioning’. Even for actions that involve modifications to several datastreams
or even several Fedora objects, the eSciDoc Infrastructure will only generate a single
intellectual version of the whole Fedora object graph. Instead of timestamps, versions
are numbered, which conforms better to user expectations.

Not all method invocations create new versions, e.g. forwarding an object to the
next state in its lifecycle. Therefore, eSciDoc maintains an additional event log that
tracks all actions using PREMIS1.

4. Application-oriented Representation

The fact that an eSciDoc object actually is a graph of Fedora objects with multiple
datastreams is completely transparent to the user. The eSciDoc Infrastructure exposes
its contents as XML representations, which contain all relevant information for
typical application scenarios, version information, metadata, and references to other
objects or parts within the same object. Making object relations explicit by means of
XLink href’s allow for easy navigation through the object graph. Seldomly requested
parts of an eSciDoc object, like the event log, are not part of the standard
representation, but can easily be retrieved by means of ‘virtual resources’.

5. Authentication and Authorization

All authentication and authorization functionality is encapsulated in the eSciDoc
Infrastructure, therefore the application programmer has not to consider the
complexity of the implantation – this is especially important when several
applications run on the same infrastructure, eventually sharing data. Every request to
the infrastructure has to pass the included authentication and authorization layer to
reach the actually business logic.

The eSciDoc authorization relies on roles, scopes and policies. A role represents a
set of policies defining the privileges for performing actions in accordance to defined
conditions, e. g. in accordance to object states. By granting these roles to users, their
privileges are defined. Additionally, for each eSciDoc role a scope is defined that
specifies for which resource objects the role has been defined. The policies of a role
are only evaluated if the object is within the scope of the role.

1 http://www.loc.gov/standards/premis/

http://www.loc.gov/standards/premis/

4 Frank Schwichtenberg, Matthias Razum

Due to the distributed nature of the eSciDoc authentication, the system does not
come with a user administration. All users are maintained in local identity
management systems (either LDAP or Shibboleth). The infrastructure never stores
user credentials, like passwords. However, in order to be able to associate users with
roles, the infrastructure creates and maintains proxy objects for users that have
accessed at least once an eSciDoc Solution.

Application-oriented Programming Model

The eSciDoc e-Research environment is built as a service-oriented architecture
(SOA). The infrastructure consists of several independent services. Each service
implements both a REST and a SOAP API. The APIs support simple CRUD and task-
oriented methods. These APIs together with object patterns, their XML
representations, versioning, and the powerful authentication and authorization form
eSciDoc’s application-oriented programming model, which focuses on the mindset of
application developers and hides the technical details of the implementation as much
as possible.

In our presentation, we will show how easy it is to create a minimal, yet useful
application on top of the eSciDoc Infrastructure. It will integrate the Schema Driven
Metadata Editor for eResearch developed by Archer and MAENAD2 in order to
allow comfortable editing of metadata records of eSciDoc Objects. It also exposes the
ability to view image content via the integrated DigiLib. We will introduce the idea of
a simple client based on XSLT transformations of object representations delivered by
the eSciDoc Infrastructure. Including manipulation facilities, the views of such a
client may be seen as pluggable mini-solutions.

The CRUD-based HTTP programming interface can easily be called from existing
applications or even websites. Every call is not only secured by the authorization
component, but leads in case of insufficient authentication to a Shibboleth login site
or an LDAP backed form. Because of the build-in simple workflow, versioning, and
authentication/ authorization, already the thinnest possible client supports basic
repository features. So the eSciDoc Infrastructure is a ready-to-integrate, fast
prototyping, developer-friendly application framework.

Conclusion and Outlook

The eSciDoc Infrastructure encapsulates Fedora as its core component, but adds a
wide range of higher-level services and its application-oriented programming model.
It allows to build various types of solutions, from light-weight Javascript hacks to
fully-blown Java applications. It fulfills the vision of creating an efficient, flexible,
programmer-friendly e-Research framework supporting web-based publication,
collaboration and communication for research environments assembled with the
repository capabilities of Fedora Digital Repository.

2 http://metadata.net/sfprojects/mde.html

http://metadata.net/sfprojects/mde.html

