480 research outputs found

    Decision Problems on Copying and Shuffling

    Full text link
    We study decision problems of the form: given a regular or linear context-free language LL, is there a word of a given fixed form in LL, where given fixed forms are based on word operations copy, marked copy, shuffle and their combinations

    Ordered Navigation on Multi-attributed Data Words

    Full text link
    We study temporal logics and automata on multi-attributed data words. Recently, BD-LTL was introduced as a temporal logic on data words extending LTL by navigation along positions of single data values. As allowing for navigation wrt. tuples of data values renders the logic undecidable, we introduce ND-LTL, an extension of BD-LTL by a restricted form of tuple-navigation. While complete ND-LTL is still undecidable, the two natural fragments allowing for either future or past navigation along data values are shown to be Ackermann-hard, yet decidability is obtained by reduction to nested multi-counter systems. To this end, we introduce and study nested variants of data automata as an intermediate model simplifying the constructions. To complement these results we show that imposing the same restrictions on BD-LTL yields two 2ExpSpace-complete fragments while satisfiability for the full logic is known to be as hard as reachability in Petri nets

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527

    Resynchronizing Classes of Word Relations

    Get PDF
    A natural approach to define binary word relations over a finite alphabet A is through two-tape finite state automata that recognize regular languages over {1, 2} x A, where (i,a) is interpreted as reading letter a from tape i. Accordingly, a word w in L denotes the pair (u_1,u_2) in A^* x A^* in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing restrictions on the reading regime from the tapes, which we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language onto {1,2}. In this way, for each regular language C subseteq {1,2}^*, one obtains a class Rel({C}) of relations. Regular, Recognizable, and length-preserving rational relations are all examples of classes that can be defined in this way. We study the problem of containment for synchronized classes of relations: given C,D subseteq {1,2}^*, is Rel({C}) subseteq Rel({D})? We show a characterization in terms of C and D which gives a decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize languages from {1, 2} x A preserving the denoted relation whenever the inclusion holds

    Resynchronizing classes of word relations

    Get PDF
    A natural approach to defining binary word relations over a finite alphabet A is through two-tape finite state automata, which can be seen as regular language L over {1,2} x A, where (i,a) is interpreted as reading letter a from tape i. Thus, a word w of the language L denotes the pair (u_1,u_2) in A* x A* in which u_i is the projection of w onto i-labelled letters. While this formalism defines the well-studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing restrictions on the reading regime from the tapes, that we call synchronization, yields various sub-classes of relations. Such synchronization restrictions are imposed through regular properties on the projection of the language onto {1,2}. In this way, for each regular language C contained in {1,2}*, one obtains a class Rel(C) of relations, such as the classes of Regular, Recognizable, or length-preserving relations, as well as (infinitely) many other classes. We study the problem of containment for synchronized classes of relations: given C,D subsets of {1,2}*, is Rel(C) contained in Rel(D)? We show a characterization in terms of C and D which gives a decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize languages from {1,2} x A preserving the denoted relation whenever the inclusion holds
    • …
    corecore