-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Resynchronizing Classes of Word Relations

Maria Emilia Descotte
LaBRI, Université de Bordeaux

Diego Figueira
CNRS, LaBRI, Université de Bordeaux

Gabriele Puppis
CNRS, LaBRI, Université de Bordeaux

—— Abstract

A natural approach to define binary word relations over a finite alphabet A is through two-tape
finite state automata that recognize regular languages over {1,2} x A, where (i,a) is interpreted
as reading letter a from tape i. Accordingly, a word w € L denotes the pair (up,us) € A* x A*

in which wu; is the projection of w onto i-labelled letters. While this formalism defines the well-
studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing
restrictions on the reading regime from the tapes, which we call synchronization, yields various
sub-classes of relations. Such synchronization restrictions are imposed through regular properties
on the projection of the language onto {1,2}. In this way, for each regular language C C {1,2}*,
one obtains a class REL(C) of relations. Regular, Recognizable, and length-preserving rational
relations are all examples of classes that can be defined in this way.

We study the problem of containment for synchronized classes of relations: given C,D C
{1,2}*, is REL(C) C REL(D)? We show a characterization in terms of C' and D which gives a
decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize
languages from {1,2} x A preserving the denoted relation whenever the inclusion holds.

2012 ACM Subject Classification Theory of computation — Formal languages and automata
theory

Keywords and phrases synchronized word relations, containment, resynchronization
Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.123

Funding Work supported by ANR project DELTA, grant ANR-16-CE40-0007, and LIA INFINIS.

1 Introduction

We study are relations of finite words, that is, binary relations R C A* x A* for a finite
alphabet A. The study of these relations dates back to the works of Biichi, Elgot, Mezei, and
Nivat in the 1960s [4, 8, 13], with much subsequent work done later (e.g., [2, 6]). Most of
the investigations focused on extending the standard notion of regularity from languages to
relations. This effort has followed the long-standing tradition of using equational, operational,
and descriptive formalisms — that is, finite monoids, automata, and regular expressions — for
describing relations, and gave rise to three different classes of relations: the Recognizable, the
Automatic (a.k.a. Regular [2] or Synchronous [6]), and the Rational relations.

The above classes of relations can be seen as three particular examples of a much larger
(in fact infinite) range of possibilities, where relations are described by special languages over
extended alphabets, called synchronizing languages [10]. Intuitively, the idea is to describe
a binary relation by means of a two-tape automaton with two heads, one for each tape,
which can move independently one of the other. In the basic framework of synchronized
relations, one lets each head of the automaton to either move right or stay in the same

© Marfa Emilia Descotte, Diego Figueira, and Gabriele Puppis;
oy

licensed under Creative Commons License CC-BY L} <
45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). E
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Déaniel Marx, and Donald Sannella;
Article No. 123; pp. 123:1-123:13 N

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/159309751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.123
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

123:2

Resynchronizing Classes of Word Relations

position. In addition, one can constrain the possible sequences of head motions by a suitable
regular language C' C {1,2}*. In this way, each regular language C C {1,2}* induces
a class of binary relations, denoted REL(C), which is contained in the class of Rational
relations (due to Nivat’s Theorem [13]). For example, the class of Recognizable, Automatic,
and Rational relations are captured, respectively, by the languages Cree = {1}* - {2},
Caut = {12}* - {1}* U {12}* - {2}*, and Crat = {1,2}*. However, it should be noted that
other well-known subclasses of rational relations, such as deterministic or functional relations,
are not captured by notion of synchronization. In general, the correspondence between a
language C' C {1,2}* and the induced class REL(C) of synchronized relations is not one-
to-one: it may happen that different languages C, D induce the same class of synchronized
relations. There are thus fundamental questions that arise naturally in this framework: When
do two classes of synchronized relations coincide, and when is one contained in the other?
Our contribution is a precise algorithmic answer to this type of questions.

More concretely, given a binary alphabet 2 = {1, 2} and another finite alphabet A, a word
w € (2 x A)* is said to synchronize the pair (w1, ws) € A* x A* if, for both i = 1,2, w; is the
projection of w on A restricted to the positions marked with ¢. For short, we denote this by
[w] = (wy,ws) — e.g., [(1,a)(1,0)(2,b)(1,a)(2,¢)] = (aba,bc). According to this definition,
every word over 2 x A synchronizes a pair of words over A, and every pair of words over
A is synchronized by (perhaps many) words over of 2 x A. This notion is readily lifted to
languages: a language L C (2 x A)* synchronizes the relation [L] = {Jw] | w € L} C A* x A*.
For example, [((1,a)(2,a) U (1,b)(2,b))*] denotes the equality relation over A = {a, b}.

In this setup, one can define classes of relations by restricting the set of admitted
synchronizations. The natural way of doing so is to fix a language C C 2%, called control
language, and let L vary over all regular languages over the alphabet 2 x A whose projections
onto 2 are in C. Thus, for every regular C C 2*, there is an associated class REL(C) of
C-controlled relations, namely, relations synchronized by regular languages L C (2 x A)*
whose projection onto 2 are in C. Clearly, C C D C 2* implies REL(C') C REL(D), but
the converse does not hold: while REL(Crec) = Recognizable C Automatic = REL(Caut),
we have CRrec € Caut. Moreover, as we have mentioned earlier, different control languages
may induce the same class of synchronized relations. For example, once again, the class
of Recognizable relations is induced by the control language Crec = {1}*{2}*, but also
by Chee = {1}*{2}*{1}*, and the class of Automatic relations is induced by Caws =
{12}* - {1}* U {12}* - {2}*, or equally by C},, = {21}*-{1}* - {2}*. This ‘mismatch’ between
control languages and induced classes of relations gives rise to the following algorithmic
problem.

CrLAss CONTAINMENT PROBLEM

Input: Two regular languages C, D C 2*
Question: Is REL(C') C REL(D) ?

Note that the above problem is different from the (C, D)-membership problem on synchronized
relations, which consists in deciding whether R € REL(D) for a given R € REL(C'), and which
can be decidable or undecidable depending on C, D [5]. The Class Containment Problem can
be seen as the problem of whether every C-controlled regular language L has a D-controlled
regular language L’ so that [L] = [L’]. It was proved in [10] that this problem is decidable for
some particular instances of D, namely, for D = Recognizable, Automatic, Length-preserving
or Rational. More specifically, given a regular language C' over the binary alphabet 2, it
is decidable whether REL(C) is contained or not in Recognizable (respectively, Automatic,
Length-preserving and Rational). Our main contribution is a procedure for deciding the Class
Containment Problem in full generality, i.e. for arbitrary C' and D.

M.E. Descotte, D. Figueira, and G. Puppis

» Main Theorem. The Class Containment Problem is decidable.

In addition, our results show that, for positive instances (C, D), one can effectively transform
any regular C-controlled language L into a regular D-controlled language L’ so that [L] = [L'].
By ‘effectively transform’ we mean that one can receive as input an automaton (or a regular
expression) for L and produce an automaton (or a regular expression) for L’. In particular,
we show a normal form of control languages, implying that every synchronized class can be
expressed through a control language of star-height at most 1.

Related work. The formalization of a framework in which one can describe classes of word
relations by means of synchronization languages is quite recent [10]. As already mentioned,
the class containment problem was only addressed for the classes of Recognizable, Automatic
and Rational relations, for which several characterizations have been proposed [10]. The
formalism of synchronizations has been extended beyond rational relations by means of
semi-linear constraints [9] in the context of path querying languages for graph databases.

The paper [3] studies relations with origin information, as induced by non-deterministic
(one-way) finite state transducers. Origin information can be seen as a way to describe
a synchronization between input and output words — somehow in the same spirit of our
synchronization languages — and was exploited to recover decidability of the equivalence
problem for transducers. The paper [11] pursues further this principle by studying “distortions”
of the origin information, called resynchronizations. Despite the similar terminology and the
connection between origins and synchronizing languages, the problems studied in [3, 11] are
of rather different nature than our Class Containment Problem.

Organization. After the preliminaries on subclasses of regular languages, we define in
Section 3 the framework of synchronized relations. Section 4 provides a roadmap with the
three key ingredients of our characterization. Sections 5, 6 and 7 contain the technical details
for these main ingredients. In Section 8 we discuss the computability of the characterization.

2 Preliminaries

We denote by N, Q the sets of non-negative integers and rationals. We use standard interval
notation as in, for example, (a,blg = {c € Q | a < ¢ < b}. A,B denote arbitrary finite
alphabets, and 2 the special binary alphabet {1, 2}.

Words and shuffles. For a word w € A*, |w| is its length, and |w|, is the number of
occurrences of symbol a in w. We denote by wli, j] the factor of w between positions
i and j (included), for 1 < ¢ < j < |w|, and we write w[i] for w[i,i]. We will also
make use of the shuffle operation, which maps a finite set of words wy,...,w, to the
language shuffle{ws,...,w,} of all words w for which there is a partition I,...,I, of
[1,|w|] so that each w; is the projection of w onto I;. For example, shuffle{ab,cd} =
{abcd, cdab, acbd, acdb, . .. }.

Parikh image. The Parikh image of a word w over A is the tuple 7(w) associating each
symbol a € A to its number of occurrences |w|, in w. We will mostly use Parikh images

for words over 2*, which are thus pairs w(w) = (|w|1, |w|2). We naturally extend this to
def

languages by letting 7(L) = {n(w) | w € L} (C N?). For z,Z1,...,%, € N?, we denote by
(z, P) the 2-dimensional linear set {Z + a1Z1 + -+ anZy | a1, ..., a, € N}, and call z € N?
its basis and Z1,...,Z, its periods. A semi-linear set is a finite union of linear sets.

123:3

ICALP 2018

123:4

Resynchronizing Classes of Word Relations

Regular languages. We use standard notation for regular expressions without complement,
namely, for expressions build up from the empty set, the empty word € and the symbols
a € A, using the operations -, U, and ()*. For economy of space and clarity we also use
the abbreviated notation ()*, ()** — which is a shorthand for (()*)* —, ()2*, ()<*, and
we identify regular expressions with the defined languages. For example, we may write
abbc € a-b22 - (cud)*, b(ab)* = (ba)*b and {a,b}* -c = (aUb)* -c. Given u = ay - --a, € A*
and v = by -+ - b, € B*, we write u®wv for the word (a1,b1) - (an,bs) € (A x B)*. Similarly,
given U C A*) V C B*, we write U@ V' C (A xB)* for the set {u®@wv | u € U,v €V, |u| = |vl|}.

The star-height of a regular expression is the maximum number of nestings of Kleene
stars ()*. By abuse of terminology, when referring to the star-height of a language, we mean
the star-height of some regular expression that represents it (in particular, we do not need to
work with the minimum star-height over all expressions). Besides regular expressions, we also
work with automata, and use classical techniques on them (notably, pumping arguments).
Given an accepting run v of an automaton A, we often identify cycles in it, that is, factors
that start and end in the same state, and that can thus be pumped. Such cycles are
called simple if they do not contain proper factors that are also cycles. Moreover, to avoid
mentioning explicitly an automaton for a language L and a run of it, we call cycle of L
(resp. simple cycle of L) the word spelled out by any cycle (resp. simple cycle) of any
accepting run of the minimal deterministic automaton recognizing L, and denote the set of
all cycles (resp. simple cycles) of L by cycles(L) (resp. simple-cycles(L)). We remark that,
however, that the use of the minimal automaton as a presentation of a regular language L
is only to avoid ambiguity when referring to the cycles of L — in fact, our results do not
depend on determinism or minimality, and can thus be applied to arbitrary non-deterministic
automata, without any difference in the characterizations we present.

A regular language C' is concat-star (a.k.a. unit-form [1]), if it is of the form
C = CiuyCiug - - - Cuy, (%)

for n € N, words ug,...,u,, and regular languages C1,...,C,. Without loss of generality,
we can always assume that the empty word does not belong to any of the languages C;. The
following trivial decomposition lemma will be used throughout.

» Lemma 1. FEvery regular language is a finite union of concat-star languages.

The C}’s from (%) are called components of the concat-star language C. Note that (an
expression of) a concat-star language as in (%) has star-height 1 if and only if every C; is
finite. A component C; is homogeneous if C C 1* or C; C 2*. A component which is
not homogeneous is called heterogeneous (e.g. C;F = {1,2}*). It will also be convenient to
distinguish a few types of concat-star languages. We say that C' is

heterogeneous if it contains at least one heterogeneous component, otherwise it is
homogeneous;

smooth if every homogeneous component is a language of the form 1%* or 2¥*, for some
k > 0, and there are no consecutive homogeneous components;
simple if it has star-height 1 and it is either homogeneous or smooth heterogeneous.

Hereafter, by “simple language” we mean simple concat-star language. The picture below
summarizes the different types of control languages, together with some separating examples.

M.E. Descotte, D. Figueira, and G. Puppis

smooth non-smooth non
homogeneous heterogeneous heterogeneous concat-star
s-h.>1 (1*1)*2* 1*(1*2)*2* 1*2*(1*2)* (1*2)* U (12)*
s-h. =1 ik e i L (12)*1* U (12)*2*

simple

In Section 5 we will see that the Class Containment Problem is reduced to the case of finite

unions of simple languages. The latter languages thus form the basis of our characterization.

3 Synchronized relations

A synchronization of a pair (wi,ws) of words over A is a word over 2 x A so that
the projection on A of positions labeled i is exactly w;, for ¢ = 1,2 — in other words,
shuffle{1/*1l @ w1, 21"zl @ w,} is the set of all synchronizations of (wy,ws). For example, the
words (1,a)(1,0)(2,a) and (1,a)(2,a)(1,b) are two possible synchronizations of the same pair
(ab,a). Every word w € (2 x A)* is a synchronization of a unique pair (wy,ws), where w; is
the sequence of A-letters corresponding to the symbol ¢ in the first position of 2 x A. We
denote such pair (w1, ws) by [w] and extend the notation to languages L C (2 x A)* by
[£] = {[w] | we L}
Given a regular language C' C 2*, we define the class of C-controlled relations as

REL(C) def {[L] | L € C®A" is regular, A is some finite alphabet}.

A slightly different definition is possible, which restricts the class of C-controlled relations to
be over a fixed alphabet A, that is, one can define RELA (C) = {[L] | L C C ® A* regular}. As
far as we are concerned with comparing classes of relations controlled by different languages,
the two definitions are somehow interchangeable, in the sense that containment between
classes is not sensible to whether we fix or not the alphabet. For example, we will see that,
for any alphabet A with at least two symbols, REL4(C) C REL4 (D) iff REL(C) C REL(D).
For economy of space, we use C' Cgrg, D and C =g, D as shorthands for REL(C) C
REL(D) and REL(C) = REL(D), respectively. The following properties are easy to verify.

» Lemma 2. For every reqular C,D,C’, D' C 2*,

Pl. if C C D, then C Cgry, D;

P2. if C Cru. D and C' Cry D/, then C - C' Cry, D+ D’ and CUC" Cry, DU D',
P3. if C Cgry D, then C* Cry D*;

P4. if C C 1" and D C 2%, then C - D =gy, D - C;

P5. if C is finite, then C - D =gy, D - C;

P6. if C Cgre D then n(C) C w(D); moreover, if C is finite, the converse also holds;
P7. if C is homogeneous concat-star, then C =g, ;¢; 1% kiglixghs for a finite I;
P8. if C is homogeneous concat-star, C Crg, D if and only if ©(C) C w(D).

Proof idea. P1 is immediate from definitions; henceforth we use it without referencing it.

P2 and P3 follow readily from the following decomposition properties.
(a) For every R € REL(C - C"), there are Ry,..., R, € REL(C), R},..., R, € REL(C") so
that R =J; R; - R;.

(b) For every R € REL(C U C’), there are Ry € REL(C), Ry € REL(C") so that R = Ry U R».

123:5

ICALP 2018

123:6

Resynchronizing Classes of Word Relations

(c) For every R € REL(C*), there are Ry,...,R, € REL(C) and I C {1,...,n}* regular so
that R = Uwel Rw[l] cee Rw[|w|]-
P4 can be verified by first decomposing any relation R € REL(C - D) into |J, R; - R} as in (a),
and then observing that in this case [|J, R; - R;] = [, R, - R;]. For P5, it is easy to see that
1-D =g, D-1and 2-D =gg, D -2 for any D, and thus by P2 this extends to commuting
with arbitrary finite languages. For P6, observe that if C' Cry, D then [C ® a*] € REL(D)
for a € A, which means that 7(C) C 7(D). PT7 is a consequence of P4 and the so-called
Chrobak normal form for regular languages over unary alphabets [7]. Finally, the proof of P8
is a variant of the proof that the operation of shuffle preserves regularity of languages. <«

4 Characterization of the Class Containment Problem

We give an overview of the main ingredients of our decision procedure for class containment.

Decomposition. A first ingredient is a decomposition result for regular control languages
into =gy, -equivalent finite unions of simple languages. Here we only state the result with a
short proof sketch; the complete proof will be given in Section 5.

» Proposition 3. Every regular language C' C 2* is effectively =grgL-equivalent to a finite
union of simple languages.

Proof idea. One first applies Lemma 1, so as to decompose the regular language C into a
finite union of concat-star languages. Then, the concat-star languages are further decomposed
into unions of concat-star languages of star-height 1. For example, (112(12)* U 122)* =gg.
(122)* U (112 U 122)*112 U (112 U 122)*11122 U (112 U 122)*1111222. This latter step is
more difficult and exploits the increased flexibility of the relation =gg, compared to equality.
It also exploits in a crucial way properties of linear sets, and more specifically those that
result from taking the Parikh images of concat-star languages. Finally, to get the desired
decomposition, one needs to decompose further the concat-star languages of star-height 1
into finite unions of simple languages as in, for example, (12)*1*2* =gy, (12)*1* U (12)*2*.
This last decomposition makes use of some basic properties from Lemma 2. |

Parikh ratios. The Parikh ratio of a pair Z = (ny,n2) € N2\ {(0,0)} is p(z) = it We
naturally extend this to non-empty words w € 2* by letting p(w) = p(m(w)) (this describes
the proportion of 1’s in w). We further extend the notation to languages: p(C) = {p(w) |
w € C\ {e}}. Note that p(C) C [0, 1]g. It is sometimes useful to think of p(C) as the cone

Qn(C)={q 7m(w) | q € Q,w € C} inside the rational plane Q x Q.

» Example 4. The Parikh images of the languages C' = (2(2112)*)* and D = (2U 2112)*
are depicted below. Note that p(C) = [0, %)Q’ while p(D) = [0, %]Q

2

2

1
Qn(D)

The following lemma summarizes the main properties of Parikh ratios that we will need.

» Lemma 5. The Parikh ratio of a concat-star language C' verifies the following properties:
1. If C = Cfuq - - - Cluy, then p(cycles(C)) C [min; inf p(C}), max; sup p(C;)]g;

2. Moreover, if C = D* for a finite D, then p(C) = p(cycles(C)) = [min p(D), max p(D)]g.

M.E. Descotte, D. Figueira, and G. Puppis

Synchronizing morphisms. Another fundamental ingredient is the notion of synchronizing
morphism, which intuitively relates the components of a concat-star language C' to the
components of a concat-star language D by comparing the Parikh ratios.

Let C = Cfuy - - - Clu,, be a heterogeneous concat-star language and D = Divy - - D} vy,
any concat-star language. We say that a function f : [1,n] — [1,m] is a synchronizing
morphism (abbreviated s.m.) from C to D if

it is monotonic: f(i) < f(j) whenever i < j; and

it preserves Parikh-ratio: for every i € [1,n], p(C7) € p(D} ;).

We write C' 2™ D to denote the existence of such synchronizing morphism. By convention,
if C' is homogeneous, then we say that there is always a synchronizing morphism from C' to
D. In particular, u == v for every u,v € 2*. The sole purpose of this trivial definition on
homogeneous concat-star languages is to make the characterization statements simpler.

» Example 6. The following function f is a synchronizing morphism:

2% 1* (122U 12)* (122)* (112)* 1* 2* (22)* N a: QII((122)")
b b: QII((122 U 112)*)
\ \ f\// \X c d c:QII((122U12)%)
(22)* 1* (122U 112)* (11U 111)* (12)* 2* d: QII((112))

Observe that synchronizing morphisms are closed under composition and hence =
defines a pre-order on concat-star languages.

Class Containment Problem for simple languages. The existence of synchronizing morph-
ism is the key property that characterizes Cgy, on simple languages. A complete proof of
the following proposition will be the theme of Section 6.

» Proposition 7. For all simple C, D C 2%, C Cry. D iff 7(C) C 7(D) and C 25 D.

Note that the case of C' homogeneous follows from P8. Intuitively, for any C' smooth
heterogeneous concat-star language of star-height 1, the characterization says that, C' Cgy, D
iff 7(C') C 7(D) and for every component of C, there is a component of D that contains
its Parikh ratio. Further, the matching between components is monotonic. For example,
we have (12)*(112)* Cgg, (12U 11122)*(121)*1*2*, because the Parikh ratios of (12)* and
(112)* are included in those of (12U 11122)* and (121)*, respectively. On the other hand, we
have (112)*(12)* Zgrg (12U 11122)*(121)*1*2* because in this case there is no motononic
matching between components.

Generalization to unions of simple languages. Section 7 concerns the generalization of the
characterization to finite unions of simple languages, which cover arbitrary regular languages
up to =grg-equivalence. The previous characterization for simple languages thus constitutes
the base case of our characterization. The lemma below allows a first generalization when C
is a union of simple languages and D is a simple language.

» Lemma 8. Cy U5 Cgrp, D Zﬁ Cy Cru, D and Cy Cryy, D.

The analogous of Lemma 8 for unions on the right hand-side does not hold in general, as
shown by the following example.

» Example 9. Let C = (12)*, Dy = (112 @] 1122)*, and Dy = (122 U 1122)*12. We have
C Crew D1 U Dg, although C Zgy, Dy and C Zrer, Da.

123:7

ICALP 2018

123:8

Resynchronizing Classes of Word Relations

Neither it holds that Parikh image containment together with the existence of s.m. to
one of the disjuncts suffices. For instance, for C' = (12)*, D} = (1212)*, D = 1*2*, we have
C' Zre Dy U DY although 7(C') C (D} U D}) and ¢’ 2™ Dj.

The characterization we provide is inductive on the number of languages that are unioned
on the right hand-side. Concretely, for a union of two languages, we will show that C' Cgg,,
D U D, iff ¢ 2™ D, for some i and C\ [D;]r Cren Ds—i, where [D;] is the closure of D;
under permutations, that is, [D;]« def {w e 2* | n(w) € n(D;)}. The idea that underlies
the proof of the necessity of our characterization is that C' can be split into a disjoint union
of CN[D;]x and C\ [D;]r, in such a way that C N [D;]; Cre, D; and C'\ [D;]x Crer D3—i.

For finite unions of simple languages, we have the following characterization. A complete
proof of this theorem will be the theme of Section 7.

» Theorem 10. For finite unions C = |J;C; and D = Uj D; of simple languages, the
following are equivalent:

c gREL D;

For alli 7(C;) € w(D) and there is j with C; = Dj. In addition, if C; is heterogeneous,

then C; \ [Djlr is regular and C; \ [Dj]lx Cren Ujrz; Dy

Coming back to Example 9, note that p(C) = {3}, p(D1) = [3, 2]g and p((122U1122)%) =
[%, %]Q Therefore, one can explain C' Cgry, Dy U Dy by the fact of having C 2% Dy and
C\ [Di1]r = (1212)*12 Cgrg. Do, where the latter containment holds by the fact that
(1212)*12 2™ Dy and 7((1212)*12) C 7(D>).

Note that there’s a caveat in the statement of Theorem 10: C; \ [D,], needs to be regular.
And in fact this is not the case in general: if C; = 1*2* and D; = (12)*, we get a non-regular
language C; \ [D;], = {1"2™ | n # m}. However, provided C; =™ D; for C; heterogeneous,
we show that C; \ [Dj] is effectively regular (in the sense that an automaton recognizing it
can be computed from automata recognizing C; and D;). This is a non-trivial fact, and will
be proved in Section 5 (Proposition 12).

The second key ingredient is that if C; Cry, D1 U---U D, then there must be some j so
that C; =™ D;. This will be proved in Section 6 (Lemma 15).

5 Decomposition into simple languages

As already mentioned, we start by reducing the Class Containment Problem for arbitrary
regular languages to the case of finite unions of simple languages (Proposition 3 below). We
do this in two steps. First, we decompose regular languages into finite unions of concat-
star languages of star-height 1 (Lemma 13 below). Then, we further decompose the latter
languages into finite unions of simple languages (Lemma 14 below).

Unions of star-height 1 languages. Lemma 13 relies on two key results, which are also of
independent interest. The first result is a normal form representation of the Parikh image
m(C) of a concat-star language C'. Formally, we say that a linear set (z, P) is in normal
form if the elements of P are linearly independent. We extend this notion to semi-linear
sets by saying that (z,,P1) U--- U (Zy, P,) is in normal form if the vectors in J, P; are
linearly independent. In particular, in dimension 2, this means that there are at most two
vectors in P. Note that if the representation of a semi-linear set is in normal form then all
its linear sets are in normal form, but the converse does not hold — for example, consider
(0,{(2,0)}) U (0,{(3,0)}). The following lemma shows that Parikh images of concat-star
languages enjoy normal forms.

M.E. Descotte, D. Figueira, and G. Puppis

» Lemma 11. For every concat-star language C' = Ciuy - -- Cluy, there exists a normal
form representation of its Parikh image 7(C). Moreover, if C is infinite, the union of the
period sets is {T_, T}, where p(Z_) = min;(inf p(C7)) and p(r1) = max;(sup p(C7)).

Proof idea. Using some basic properties of Parikh images, we reduce to the case where C' is
a concatenation of expressions of the form u* (for v a non-empty word) or (uf---ulu)* (for
U, ..., Up, u non-empty words). For any C in this form, the Parikh image of words in C' can
be expressed in terms of some words w_, w4 such that 7(w_) = z_ and n(w4) = Z4+. Then,
any word of C' can be represented as a constrained iteration of these two words. |

It is worth pointing out the difference with the normal form from [12]. While the normal
form of [12] holds for arbitrary regular languages, our normal form holds only for concat-star
languages over binary alphabets (e.g., it fails for (12)* U 1* U 2*). Conversely, the normal
form from [12] does not guarantee the linear independence of the vectors in the union of the
periods, as we do here instead. Proposition 12 below relies on such an additional property.
(Also, [1] gives a procedure to compute Parikh images, though no normal form is implied.)

The second result shows that, under certain conditions, one can intersect a regular
language C' by a language of the form [D], = 7~ !(7(D)), with D concat-star, and obtain a
language that is again regular. This result not only enables the decomposition into star-height
1 languages, but will be used also later to formalize a recursive characterization of Cgy; for
unions of simple languages (cf. Section 7).

» Proposition 12. Given C regular and D concat-star so that p(cycles(C)) C p(cycles(D)),
the languages C N [D]; and C \ [D], are effectively regular. If in addition D is of the form
Diu, then CN[D]; Cre D.

Proof idea. We exploit the fact that words in 2* are in bijection with paths inside N? that
originate in 0 = (0,0) and, furthermore, that words with the same Parikh image correspond
to paths with the same endpoints. The claim boils down to considering some word w € 2*
and proving that, under suitable hypotheses, the path induced by w can be approximated by
a path inside 7(D) that stays sufficiently close to the former path. The use of Lemma 11 will
be crucial here, since it gives a normal form (J,(Z;, P;) for the latter set 7(D). Intuitively,
it implies that the words from [D], are represented by paths that never get too far from
the linear set (0,J; P;). For example, by pairing this property with the assumption that
pleycles(C)) C p(cycles(D)), one can show that the path induced by a word w € C stays
close to (0,|J; P;), and hence also to w(D). Stronger variants of this property are shown,
that take into account the exact displacement of points along the path induced by w from
the points in 7(D). These latter properties are used by suitable automata that recognize the
languages C' N [D], and C \ [D]. <

As we explained in the proof sketch, the above proposition relies on the normal form
for the semi-linear set 7(D), which in turns relies on the fact that D is concat-star. The
proposition does not hold if we replace D with an arbitrary regular language. For instance,
consider C' = 1(11)*2(22)* and D = (12)* U (11)*(22)*, and observe that p(cycles(C)) =
[0,1]g = p(cycles(D)), but C N [D], = {1(11)"2(22)" | n € N} is clearly not regular.

Although Proposition 12 is stated in full generality, that is, for every regular language C
so that p(cycles(C)) C p(cycles(D)), in the proof of the decomposition result below we will
use it only for a smooth heterogeneous concat-star language C' so that C 2™ D (this is
sufficient but not necessary for verifying the hypothesis p(cycles(C)) C p(cycles(D))).

123:9

ICALP 2018

123:10

Resynchronizing Classes of Word Relations

» Lemma 13. Every reqular C C 2% is =gy -equivalent to a finite union | J; D; of concat-star
languages of star-height 1.

Towards the proof of this lemma, note that, by Lemma 1, C is a finite union of concat-star
languages Ciuy - -- Cruyp. The lemma then follows from applying Claim 1 below to each
component of the concat-star languages, and then using P2.

» Claim 1. Every regular D* is =gg.-equivalent to a finite union |J; D} u;, with finite D;’s.

Proof idea of Claim 1. Since 7(D*) is a finite union of linear sets, from the latter we can
extract languages of the form D}u;. Then we can decompose D* as the union of D*N[D}u] .
From there, the result follows easily from Proposition 12 and P2. |

Unions of simple languages. We finally show how to decompose into simple languages.

» Lemma 14. FEvery concat-star C C 2* of star-height 1 is =grg-equivalent to a finite union
U, Ci of simple languages.

Proof idea. By using the basic properties given in Lemma 2, we can reduce the problem to
the case where C is of the form 1¥*2**w* for some heterogeneous word w and some natural
numbers k, k. This case is easy to prove by using again those basic properties. |

As a corollary of Lemmas 13 and 14, we have our desired result.

» Proposition 3. Every regular language C' C 2* is effectively =gg -equivalent to a finite
union of simple languages.

6 Simple languages

We prove the characterization result for simple languages, which we recall here.

» Proposition 7. For all simple C, D C 2*, C Cgy, D iff 7(C) C n(D) and C =™ D.

For the left-to-right direction, by P6, C' Crg, D implies 7(C) C 7(D). The proof that
C Crp, D implies C 2™ D is given in a more general setup where D is a finite union of
simple languages. This statement will be used in the characterization of the next section.

» Lemma 15. For C a simple language and D = J, D; finite union of simple languages, if
C Cru D, then C 22 D; for some i. In particular, for C, D simple languages, if C' Cre D,
then C 2™ D. Further, the statement holds even if we consider RELy -containment for any
A with at least two letters.

Proof idea. The idea is to construct a relation R € REL(C) so that from R € REL(D),
using suitable pumping arguments, one can extract a synchronizing morphism from C
to some D;. The relation R must depend on both languages C, D, but the underlying
alphabet can be fixed and taken binary, say A = {a,b}. For example, if C is of the form
C; and contains two words 4~ and u with minimum and maximum Parikh ratios, and
if the automaton for D has a single strongly connected component, then one can define
the relation R = [(u™ ®@ al*)* - (ut ® b|“+|)*]]. In this case, R € REL(D) would imply
p(u™), p(ut) € p(D), and hence C 2™ D. This construction can be modified for more
general languages C, D, by using words with different Parikh ratios from each component
of C' and by increasing the number of alternations between these ratios on the basis of the
number of components of D. While the construction is more involved in the general case,
and in particular needs to include iterations of words which are not necessarily of minimum
or maximum Parikh ratios for a component, the intuition remains the same. <

M.E. Descotte, D. Figueira, and G. Puppis

» Observation 16. The previous Lemma 15 does not hold for arbitrary concat-star languages
C. For example, consider (12)*1*2* =gy, (12)*1* U (12)*2*, where there is no s.m. from
(12)*1*2* to (12)*1*, nor from (12)*1*2* to (12)*2*.

Conversely, to show that the conditions 7(C) C 7(D) and C 2™ D are sufficient to
have C Cry, D, where C, D are simple, it is useful to introduce a normal form for languages
of the form C*, with C finite.

» Lemma 17. For every p,q > 0, finite C C 2%, and u_,us € C so that p(u_) = min p(C)
and p(uy) = max p(C), there exists a finite C' C C* so that C* =gg, (v Uud)* - C".

In particular, the lemma implies that C* =gg, (u— Uuy)* - C’ for some finite ¢’ C C*
and u_,uq words of C' of minimum and maximum ratio. In other words, it just suffices
to iterate two words from C and then append tails of bounded length to obtain the class
REL(C*). With this in mind, we can easily prove our characterization for simple languages.

Proof idea of Proposition 7. The left-to-right direction follows from P6 and Lemma 15. For
the opposite direction, the case where C' is homogeneous is straightforward by P8. For C
heterogeneous, we use P5 to we assume wlog that C = C} --- Cruand D = Dj --- D} v. Since
every C; is finite (recall that simple languages have star-height 1), we can consider words
w;,—, w; 4+ of minimum and maximum Parikh ratio. Using the normal form of Lemma 17 plus
the existence of s.m., we obtain C} Cgyy, D;i(i)Cg for a finite C/ C Cf. Thus, C; - -+ Cku Cgyy,
Dz C1---Di Chu=gg. D} - D; C1 -+ Chu Crey, DY -+ Djyv. |

7 Regular languages

We now prove the characterization theorem for unions of simple languages. Thanks to this
theorem and to Proposition 3, we will obtain an effective characterization for arbitrary
regular languages, and thus solve the Class Containment Problem in its full generality.

» Theorem 10. For finite unions C' = (J; C; and D = J; D; of simple languages, we have

s.m.

C Cre. D if and only if for all ¢ #(C;) C w(D), there is j with C; — D; and if C; is
heterogeneous, then C; \ [Dj]x is regular and C; \ [D;]r Crew Uiy Dyr-

Note in particular that the conditions in the characterization of Theorem 10 require that
C; \ [D;] is regular. Despite that, this property is always verified when C; =™+ D; and C;
is heterogeneous by Proposition 12 from Section 5. Indeed, C; =™ D; for C; heterogeneous
implies that all components of C; are mapped to components of D;. In view of Lemma 5 and
the fact that C; and D, have star-height 1, this implies that p(cycles(C;)) C p(cycles(D;)),
and hence, by Proposition 12, C; \ [D,], is regular. We are now ready to prove the theorem.

Proof of Theorem 10. For the left-to-right implication, by Lemma 8, we have that C; Cgy,
D for every i. Containment of Parikh images follows then from P6. For any fixed i, if C;
is homogeneous we have C; == Dj for every j, and if it is smooth heterogeneous, then
Lemma 15 yields the existence of some j so that C; =™ D,. By Proposition 12, C; \ [D;]~
is regular, and we now prove that C; \ [Djlx Crew Uj»; Dj. Take R € REL(C; \ [Djlr)
and a regular L C (C; \ [Dj]x) ® A* so that [L] = R. Since C; \ [D;]r C C;, we have
R € REL(C;) C REL(D), by P1 and hypothesis. Let L’ C D ® A* be a regular language so
that [L'] = [L] = R. Since the projection onto 2 of L and L’ have necessarily the same
Parikh image, it follows that L' N (D; ® A*) = 0, and thus that L' C (J;/,; Dj») @ A" or, in
other words, that R € REL(U;/; D).

123:11

ICALP 2018

123:12

Resynchronizing Classes of Word Relations

For the right-to-left implication, for C; homogeneous, 7(C;) C (D) implies C; Cryy, D
by P8. For C; heterogeneous, we have C; = (C; \ [D,]») U (C; N [Dj]x). By hypothesis
plus property P1, C; \ [D;lr Cre. D. Then, by Lemma 8, it only remains to check that
CiN[Dj]x Crer D. Now, by Proposition 12 and Proposition 3, C; N [Dj], is =ru.-equivalent
to a finite union of simple languages (C},)xex. Note that C}, Cry, C; for all k € K. Then,

; s.m.

by the left-to-right direction of Proposition 7, we have C}, — C; for all k. By composition
of synchronizing morphisms, we obtain C}, =" Dj for all k € K. Since we also have that
7(C},) C w(D;), by the right-to-left direction of Proposition 7, we have that Cj, Cry, D; for
all k € K. Then, from Lemma 8 it follows that C; Crg, D; € D. Since this happens for

every C;, again by Lemma 8 the statement follows. |

8 Decidability and complexity

We have given a characterization of the pairs C, D of regular languages that satisfy C' Cry D.
We argue that this characterization is effective.

As explained in Section 7, there are three main steps that one need to take for deciding
whether C Cgry, D, for two given regular languages C, D: First, one needs to decompose C'
and D as finite unions J, C; and |J ; Dj of simple languages. This preprocessing relies on two
constructions: the computation of the normal form for semi-linear sets and the construction
of an automaton for C' N [D],, proving that is regular. A close inspection of these proofs in
Section 5 shows that both procedures are effective, and thus so is the decomposition.

Then, based on the characterization of Theorem 10, one has to identify suitable synchron-
izing morphisms from each C; to some D;. This step boils down to checking whether two
components C/;, and D ;, of concat-star languages satisfy p(C;;/) C p(Dj ;). Thanks to
the insight of Lemma 5, the containment of Parikh ratios and thus the existence of such
synchronizing morphism is decidable.

Finally, the third step uses Theorem 10, reducing the problem |J, C; Cre Uj D; to
sub-problems of the form C; \ [D;,]x Cre. U 724, Djr, which has a smaller union in the right
hand-side and thus can be solved recursively (but in principle non-elementary).

The above arguments show that the Class Containment Problem is decidable. Once we
know that C Cgry, D for two given regular languages C, D, it is reasonable to ask whether it
is possible to resynchronize any relation from C to D, namely, whether there is an algorithm
that transforms any automaton A recognizing L C C ® A* into an automaton A’ recognizing
L’ C D ® A* so that [L'] = [L]. A close inspection to our decision procedure for C' Cry, D
gives a positive answer to the question. Indeed, all our proofs are constructive.

We can summarize the above arguments with the following corollary.

» Corollary 18. There is a non-elementary algorithm that, given two regular languages
C,D C 2*, decides whether C' Cry, D.

There is also a non-elementary algorithm that, given an automaton for L C C®A*, constructs
an automaton for some L' C D @ A* so that [L'] = [L], provided C Crg, D.

9 Discussion

The overall picture we obtain from our results is that REL(C) C REL(D) depends on
comparing the ratio growth of the two coordinates on the cycles of the transition graph
of the automata A¢, Ap recognizing C, D. Concretely, our reduction into synchronizing
morphisms for simple languages can be thought of restricting our attention to cycles ¢y, ..., ¢,
of A¢ so that: ¢;41 is reachable from ¢;, and ¢; or ¢;41 is heterogeneous (recall that in a

M.E. Descotte, D. Figueira, and G. Puppis

simple concat-star language, there are no consecutive homogeneous components). Intuitively,
REL(C) C REL(D) whenever n(C) C 7(D) and for every sequence of cycles cy,...,c, as
before, there exists a corresponding sequence of cycles ¢f,...,c), in Ap with the same
properties so that ¢; and ¢; have the same Parikh ratio for every i.

We also recall (cf. proof of Lemma 15) that our characterization holds for the containment
problem REL(C) C REL(D), but also for any variant with a fixed alphabet of cardinality at
least 2. For the variant with a unary alphabet A, it is easy to see that REL4(C) C REL4(D)
is equivalent to w(C) C m(D). As concerns relations of higher arity defined by control
languages C' C k* = [1, k]*, it is not clear if a similar characterization may hold. For example,
the normal form of Lemma 11 does not generalize to control alphabets of more than two
letters. Finally, we leave for future work the issue of determining the precise complexity of
the Class Containment Problem.

—— References

1 Bahareh Badban and Mohammad Torabi Dashti. Semi-linear parikh images of regular
expressions via reduction. In International Symposium on Mathematical Foundations of
Computer Science (MFCS), volume 6281 of Lecture Notes in Computer Science, pages 653~
664. Springer, 2010. doi:10.1007/978-3-642-15155-2_57.

2 Jean Berstel. Transductions and Context-Free Languages. B. G. Teubner, 1979.

3 Mikotaj Bojanczyk. Transducers with origin information. In International Colloguium
on Automata, Languages and Programming (ICALP), volume 8573 of Lecture Notes in
Computer Science, pages 26-37. Springer, 2014. doi:10.1007/978-3-662-43951-7.

4 Julius Richard Biichi. Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly, 6(1-6):66-92, 1960.

5 Olivier Carton, Christian Choffrut, and Serge Grigorieff. Decision problems among the main
subfamilies of rational relations. Informatique Théorique et Applications (ITA), 40(2):255-
275, 2006. doi:10.1051/ita:2006005.

6 Christian Choffrut. Relations over words and logic: A chronology. Bulletin of the EATCS,
89:159-163, 2006.

7 Marek Chrobak. Finite automata and unary languages. Theoretical Computer Science,
47(3):149-158, 1986. doi:10.1016/0304-3975(86)90142-8.

8 Calvin C. Elgot and Jorge E. Mezei. On relations defined by generalized finite automata.
IBM Journal of Research and Development, 9(1):47-68, 1965. doi:10.1147/rd.91.0047.

9 Diego Figueira and Leonid Libkin. Path logics for querying graphs: Combining express-
iveness and efficiency. In Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 329-340. IEEE Computer Society Press, 2015. doi:10.1109/LICS.2015.39.

10 Diego Figueira and Leonid Libkin. Synchronizing relations on words. Theory of Computing
Systems, 57(2):287-318, 2015. doi:10.1007/s00224-014-9584-2.

11 Emmanuel Filiot, Ismaél Jecker, Christof Loding, and Sarah Winter. On equivalence and
uniformisation problems for finite transducers. In International Colloquium on Automata,
Languages and Programming (ICALP), volume 55 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 125:1-125:14. Leibniz-Zentrum fiir Informatik, 2016. doi:10.
4230/LIPIcs.ICALP.2016.125.

12 Eryk Kopezynski and Anthony Widjaja To. Parikh images of grammars: Complexity and
applications. In Annual IEEE Symposium on Logic in Computer Science (LICS), pages
80-89. IEEE Computer Society Press, 2010. doi:10.1109/LICS.2010.21.

13 Maurice Nivat. Transduction des langages de Chomsky. Annales de ’Institut Fourier,
18:339-455, 1968.

123:13

ICALP 2018

http://dx.doi.org/10.1007/978-3-642-15155-2_57
http://dx.doi.org/10.1007/978-3-662-43951-7
http://dx.doi.org/10.1051/ita:2006005
http://dx.doi.org/10.1016/0304-3975(86)90142-8
http://dx.doi.org/10.1147/rd.91.0047
http://dx.doi.org/10.1109/LICS.2015.39
http://dx.doi.org/10.1007/s00224-014-9584-2
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.125
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.125
http://dx.doi.org/10.1109/LICS.2010.21

	Introduction
	Preliminaries
	Synchronized relations
	Characterization of the Class Containment Problem
	Decomposition into simple languages
	Simple languages
	Regular languages
	Decidability and complexity
	Discussion

