6,874 research outputs found

    Multi-graph learning

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Multi-instance learning (MIL) is a special learning task where labels are only available for a bag of instances. Although MIL has been used for many applications, existing MIL algorithms cannot handle complex data objects, and all require that instances inside each bag are represented as feature vectors (e.g. being represented in an instance-feature format). In reality, many real-world objects are inherently complicated, and an object can be represented as multiple instances with dependency structures (i.e. graphs). Such dependency allows relationships between objects to play important roles, which, unfortunately, remain unaddressed in traditional instance-feature representations. Motivated by the challenges, this thesis formulates a new multi-graph learning paradigm for representing and classifying complicated objects. With the proposed multi-graph representation, the thesis systematically addresses several key learning tasks, including Multi-Graph Learning: A graph bag contains one or multiple graphs, and each bag is labeled as either positive or negative. The aim of multi-graph learning is to build a learning model from a number of labeled training bags to predict previously unseen bags with maximum accuracy. To solve the problem, we propose two types of approaches: 1) Multi-Graph Feature based Learning (gMGFL) algorithm that explores and selects an optimal set of subgraphs as features to transfer each bag into a single instance for further learning; and 2) Boosting based Multi-Graph Classification framework (bMGC), which employs dynamic weight adjustment, at both graph- and bag-levels, to select one subgraph in each iteration to form a set of weak graph classifiers. Multi-Instance Multi-Graph learning: A bag contains a number of instances and graphs in pairs, and the learning objective is to derive classification models from labeled bags, containing both instances and graphs, to predict previously unseen bags with maximum accuracy. In the thesis, we propose a Dual Embedding Multi-Instance Multi-Graph Learning (DE-MIMG) algorithm, which employs a dual embedding learning approach to (1) embed instance distributions into the informative subgraphs discovery process, and (2) embed discovered subgraphs into the instance feature selection process. Positive and Unlabeled Multi-Graph Learning: The training set only contains positive and unlabeled bags, where labels are only available for bags but not for individual graphs inside the bag. This problem setting raises significant challenges because bag-of-graph setting does not have features available to directly represent graph data, and no negative bags exits for deriving discriminative classification models. To solve the challenge, we propose a puMGL learning framework which relies on two iteratively combined processes: (1) deriving features to represent graphs for learning; and (2) deriving discriminative models with only positive and unlabeled graph bags. Multi-Graph-View Learning: A multi-graph-view model utilizes graphs constructed from multiple graph-views to represent an object. In our research, we formulate a new multi-graph-view learning task for graph classification, where each object to be classified is represented graphs under multi-graph-view. To solve the problem, we propose a Cross Graph-View Subgraph Feature based Learning (gCGVFL) algorithm that explores an optimal set of subgraph features cross multiple graph-views. In addition, a bag based multi-graph model is further used to relax the labeling by only requiring one label for each graph bag, which corresponds to one object. For learning classification models, we propose a multi-graph-view bag learning algorithm (MGVBL), to explore subgraphs from multiple graph-views for learning. Experiments on real-world data validate and demonstrate the performance of proposed methods for classifying complicated objects using multi-graph learning

    Cross-relation Cross-bag Attention for Distantly-supervised Relation Extraction

    Full text link
    Distant supervision leverages knowledge bases to automatically label instances, thus allowing us to train relation extractor without human annotations. However, the generated training data typically contain massive noise, and may result in poor performances with the vanilla supervised learning. In this paper, we propose to conduct multi-instance learning with a novel Cross-relation Cross-bag Selective Attention (C2^2SA), which leads to noise-robust training for distant supervised relation extractor. Specifically, we employ the sentence-level selective attention to reduce the effect of noisy or mismatched sentences, while the correlation among relations were captured to improve the quality of attention weights. Moreover, instead of treating all entity-pairs equally, we try to pay more attention to entity-pairs with a higher quality. Similarly, we adopt the selective attention mechanism to achieve this goal. Experiments with two types of relation extractor demonstrate the superiority of the proposed approach over the state-of-the-art, while further ablation studies verify our intuitions and demonstrate the effectiveness of our proposed two techniques.Comment: AAAI 201

    Adaptive Target Recognition: A Case Study Involving Airport Baggage Screening

    Full text link
    This work addresses the question whether it is possible to design a computer-vision based automatic threat recognition (ATR) system so that it can adapt to changing specifications of a threat without having to create a new ATR each time. The changes in threat specifications, which may be warranted by intelligence reports and world events, are typically regarding the physical characteristics of what constitutes a threat: its material composition, its shape, its method of concealment, etc. Here we present our design of an AATR system (Adaptive ATR) that can adapt to changing specifications in materials characterization (meaning density, as measured by its x-ray attenuation coefficient), its mass, and its thickness. Our design uses a two-stage cascaded approach, in which the first stage is characterized by a high recall rate over the entire range of possibilities for the threat parameters that are allowed to change. The purpose of the second stage is to then fine-tune the performance of the overall system for the current threat specifications. The computational effort for this fine-tuning for achieving a desired PD/PFA rate is far less than what it would take to create a new classifier with the same overall performance for the new set of threat specifications

    Adaptive feature thresholding for off-line signature verification

    Get PDF
    This paper introduces Adaptive Feature Thresholding (AFT) which is a novel method of person-dependent off-line signature verification. AFT enhances how a simple image feature of a signature is converted to a binary feature vector by significantly improving its representation in relation to the training signatures. The similarity between signatures is then easily computed from their corresponding binary feature vectors. AFT was tested on the CEDAR and GPDS benchmark datasets, with classification using either a manual or an automatic variant. On the CEDAR dataset we achieved a classification accuracy of 92% for manual and 90% for automatic, while on the GPDS dataset we achieved over 87% and 85% respectively. For both datasets AFT is less complex and requires fewer images features than the existing state of the art methods, while achieving competitive results

    Computational Models for the Automatic Learning and Recognition of Irish Sign Language

    Get PDF
    This thesis presents a framework for the automatic recognition of Sign Language sentences. In previous sign language recognition works, the issues of; user independent recognition, movement epenthesis modeling and automatic or weakly supervised training have not been fully addressed in a single recognition framework. This work presents three main contributions in order to address these issues. The first contribution is a technique for user independent hand posture recognition. We present a novel eigenspace Size Function feature which is implemented to perform user independent recognition of sign language hand postures. The second contribution is a framework for the classification and spotting of spatiotemporal gestures which appear in sign language. We propose a Gesture Threshold Hidden Markov Model (GT-HMM) to classify gestures and to identify movement epenthesis without the need for explicit epenthesis training. The third contribution is a framework to train the hand posture and spatiotemporal models using only the weak supervision of sign language videos and their corresponding text translations. This is achieved through our proposed Multiple Instance Learning Density Matrix algorithm which automatically extracts isolated signs from full sentences using the weak and noisy supervision of text translations. The automatically extracted isolated samples are then utilised to train our spatiotemporal gesture and hand posture classifiers. The work we present in this thesis is an important and significant contribution to the area of natural sign language recognition as we propose a robust framework for training a recognition system without the need for manual labeling

    An EPTAS for machine scheduling with bag-constraints

    Full text link
    Machine scheduling is a fundamental optimization problem in computer science. The task of scheduling a set of jobs on a given number of machines and minimizing the makespan is well studied and among other results, we know that EPTAS's for machine scheduling on identical machines exist. Das and Wiese initiated the research on a generalization of makespan minimization, that includes so called bag-constraints. In this variation of machine scheduling the given set of jobs is partitioned into subsets, so called bags. Given this partition a schedule is only considered feasible when on any machine there is at most one job from each bag. Das and Wiese showed that this variant of machine scheduling admits a PTAS. We will improve on this result by giving the first EPTAS for the machine scheduling problem with bag-constraints. We achieve this result by using new insights on this problem and restrictions given by the bag-constraints. We show that, to gain an approximate solution, we can relax the bag-constraints and ignore some of the restrictions. Our EPTAS uses a new instance transformation that will allow us to schedule large and small jobs independently of each other for a majority of bags. We also show that it is sufficient to respect the bag-constraint only among a constant number of bags, when scheduling large jobs. With these observations our algorithm will allow for some conflicts when computing a schedule and we show how to repair the schedule in polynomial-time by swapping certain jobs around
    • ā€¦
    corecore