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Abstract

This paper introduces Adaptive Feature Thresholding (AFT) which is a novel method of person-dependent
off-line signature verification. AFT enhances how a simple image feature of a signature is converted to
a binary feature vector by significantly improving its representation in relation to the training signatures.
The similarity between signatures is then easily computed from their corresponding binary feature vectors.
AFT was tested on the CEDAR and GPDS benchmark datasets, with classification using either a manual
or an automatic variant. On the CEDAR dataset we achieved a classification accuracy of 92% for manual
and 90% for automatic, while on the GPDS dataset we achieved over 87% and 85% respectively. For both
datasets AFT is less complex and requires fewer images features than the existing state of the art methods,
while achieving competitive results.
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1 Introduction

Hand written signatures have a well-established
and accepted place in society as a formal means
of personal verification, for both the identification
and the intent of the signatory. Because of this,
signatures are the most accepted method of veri-
fication [1] and are used in government, legal and
commercial transactions. A result of this is that
signatures are often forged for the purpose of feign-
ing the authenticity of a document. This leads
to the problem of being able to correctly verify
whether a signature is a genuine or a forgery.

Many different approaches have been employed for
accurately classifying whether a signature is a gen-
uine or a forgery. These approaches are split into
two categories: on-line and off-line.

Online approaches use a digitising surface to cap-
ture dynamic features about how a signature is
written. These are features such as pressure, speed
and direction, which allow online classification to
achieve accuracies of over 95% [2].

Off-line verification deals with signatures that have
been written on paper and scanned in to the com-
puter. Because of this, they are unable to use
dynamic features. This means that the signatures
can only be distinguished from each other by what
is visually available.
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Person-dependent classification is a commonly used
method that is designed to train with genuine sig-
natures from only one person. Two methods that
have achieved high person-dependent classification
accuracies are graph matching [3] and the Discrete
Wavelet Transform (DWT) [4].

The approach that we use is similar to the Gradi-
ent, Structural and Concavity (GSC) method [5],
except we only use the gradient direction. The
improvement that dramatically increased classifi-
cation accuracy was the way in which we imple-
mented the thresholding of each image feature count.
This enhanced the creation of the binary feature
vector [6] by adaptively restricting which feature
bits are set to 1. In GSC, thresholding is carried
out with a fixed value that is manually chosen,
with its capability being determined by experimen-
tation, where if the count of an image feature is
above this value, then the feature bit is set to 1,
otherwise it is set to 0. An adaptation is then made
to our thresholding method to achieve automatic
classification. As well as these methods, a novel
combination of spatial pyramids [7] and equimass
sampling grids [8] is also introduced to help boost
the classification accuracy.

2 Signature Representation

Each signature, before it is processed, is in the form
of a binarised digital image (see Figure 1). This
format does not describe the individual aspects of
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the signature in a manner that makes it feasible for
comparing it to other signatures. This is because
digital images are designed to be visually identifi-
able to humans. As a result, each signature needs
to be converted into a format that will allow the
similarity of it and another signature to be easily
computed.

This section details the implementation of the novel
thresholding method, AFT, that this paper presents.
Essentially, this method ensures that the compar-
ative similarity of a signature is more accurately
represented in contrast to the training signatures
when it is converted from a digital image to a
binary feature vector.

Figure 1: A signature that has been binarised.

2.1 Binary Feature Vector

A binary feature vector is a method of represent-
ing a signature by indicating whether a particular
feature matches a certain criteria by turning the
corresponding feature bit on. The vector structure
is shown in equation (1), where V is the feature
vector, z is a feature bit and k is the number of
elements in the vector.

V = (z1, z2, · · · , zk) zi ∈ {0, 1} (1)

2.2 Gradient Direction Extraction

The creation of a binary feature vector is based
solely on the gradient direction of each pixel from
across a signature. This direction θ of a pixel at co-
ordinates x and y is found by equation (2), where
Gx is the Sobel kernel for horizontal change and
Gy is the kernel for vertical change.

θ(x, y) = tan−1

(
Gy

Gx

)
(2)

The resulting direction is a value that ranges from
0.0 to 2π radians. This range can then be split
into 18 non-overlapping segments based on 2π

18 ra-
dians, allowing a gradient direction histogram to be
created from the count of each direction. For the
experiments conducted in this paper, 18 segments
were chosen because this value proved effective in
initial tests and is also used in [9].

2.3 Equimass Spatial Pyramids

Using the gradient direction in its current state
only expresses a signature at the global level. This
can be improved upon through the use of a spatial

pyramid, which defines the signature at increas-
ingly finer levels of granularity, improving the abil-
ity to distinguish a signature in relation to other
signatures. This is normally achieved through the
use of different types of image features which cap-
ture particular properties of the signature, but the
use of spatial pyramids helps to overcome this need
for multiple features.

The levels of granularity are produced by split-
ting a signature up into increasingly smaller re-
gions, which is usually carried out with a uniform
grid. The disadvantage of a uniform grid is that
it does not capture the same structural proper-
ties of corresponding regions between signatures.
A novel and effective approach that improved the
capture of these structural properties was achieved
by combining spatial pyramids and equimass sam-
pling grids.

Equimass is an adaptive grid based on the number
of black pixels or mass M of a signature, where the
grid lines are found at the equimass divisions of
the horizontal and vertical mass histogram. That
is, where the masses between all adjacent points
on either the x-axis or the y-axis are equal. This
average mass MA is found by equation (3), where
r is the number of horizontal or vertical regions.

MA =
M

r
(3)

Figure 2 shows how the grid lines will be placed
for each of the three levels of the spatial pyramid
if the number of regions for the finest level (c) is
8×4. An example of this calculation is if Figure
2(a) has mass M = 2709, then the single vertical
line will be placed where the number of black pixels
in both regions is 2709

2 = 1354.

(a)

(b)

(c)

Figure 2: A three level spatial pyramid.

2.4 Novel Feature Thresholding

When thresholding a particular gradient direction
of a region, the criteria for determining whether the
corresponding feature bit will be 0 or 1 is depen-
dent upon the training signatures, where if the di-
rection count c of a set of pixels abides by τ1 ≤ c < τ2,



then the feature bit is set to 1, otherwise it is set
to 0.

The lower threshold, τ1 and the upper threshold,
τ2 are found at one sample standard deviation S
either side of µ, where µ is the mean of D, in which
D is the count of a particular direction from the
same region across each training signature. The
problem with using S to calculate both τ1 and τ2

is that any possible skew is not taken into account,
as the values from D may be spread about µ in
a fashion that is not normally distributed. So to
adjust for the skew, τ1 is calculated by the equation
(4) and τ2 is calculated by (5).

τ1 = µ− SL (4)
τ2 = µ + SU (5)

The variable SL is the average distance that values
below µ lie from µ and is found by equation (6). SU

is found in a similar fashion but for values above
µ, this is calculated by equation (7).

SL =

√√√√ 1
DL − 1

n∑
i=1

(Di − µ)2 ∀D < µ (6)

SU =

√√√√ 1
DU − 1

n∑
i=1

(Di − µ)2 ∀D > µ (7)

DL is the number of values in D which are less than
µ, DU is the number that have a value greater than
µ and n is the size of D.

For example, if D = {36, 47, 54, 59, 63, 81} then µ
would equal the mean value of D which is 56.67.
SL then equals 16.24 and is calculated by equa-
tion (6) using the values 36, 47 and 54, the values
from D which are less than µ. SU equals 17.86
and is found by equation (7), using the values 59,
63 and 81, the values greater than µ. τ1 then
equals 56.67 - 16.24 = 40.43 and τ2 would equal
56.67 + 17.86 = 74.53. Therefore the correspond-
ing feature bit will be 1 if 40.43 ≤ c < 74.53,
otherwise it will be 0.

Using this method, each direction in a gradient
direction histogram can be thresholded indepen-
dently and used to produce one bit of the feature
vector. This is then repeated for the histogram
of each region across each spatial level for all sig-
natures. Using this thresholding method on the
signature in Figure 2 would produce a feature vec-
tor that is 756 feature bits in length, consisting of
36 bits for (a), 144 bits for (b) and 576 bits for (c).

3 Signature Classification

The classification of an unknown signature is based
heavily on the similarity score of two feature vec-
tors. The comparison of these two vectors produces

Va = 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 1
Vb = 1 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1
Vc = 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 1
Vu = 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 1 1 1

Figure 3: A set of binary feature vectors of length 18

four values based on the sum of the four possible
variations at each position in the vectors. These
four values are defined by equation (8), where C is
the count of times that each of the four outcomes
occur, i is the feature bit value for the first vector
V1, and j is the value for the second vector V2.

Cij (i, j ∈ {0, 1}) (8)

The similarity between two vectors, that both have
the length k, is calculated by the function f and
produces a score between 0 and 1, where if the
score is 0, the two vectors are completely different,
while 1 means they are the same. This scoring
method is used in [3] and is calculated by equation
(9). The calculation of f only requires C00 and
C11, as it is designed to take into consideration
only the positions where the feature bits are both
the same. For example, if the feature vectors Va

and Vb in Figure 3 were compared, the result would
be that C00 = 4 and C11 = 5. The similarity of
these two vectors would be calculated by equation
(9) and would equal 0.389.

f(V1, V2) =
0.5× C00 + C11

k
(9)

The similarity score between an unknown vector U
and the set of training vectors T is then found as
the mean similarity when U is compared to each
signature in T . For example, if the vectors Va, Vb

and Vc from Figure 3 are used as the set T , and Vu

is an unknown vector, the similarity score between
T and Vu would be .491.

The threshold that will be used to determine the
classification is produced from the average similar-
ity score µ of the training vectors when they are
compared to each other. This method of finding µ
is outlined in [3], and [10]. Carrying on from the
previous example, if T comprises of the first three
vectors from Figure 3, µ would be .398.

Because µ is the mean similarity score of the train-
ing vectors, it will tend towards classifying half of
the genuine signatures as forgeries, therefore its
use as the threshold is not ideal. So to create the
threshold, an offset is required to move the mean
down the similarity scale, with the intent being to
maximise the classification accuracy of both the
genuine and forgery signatures. This is shown in
Figure 4, where the threshold is the offset of the



mean. Two methods were investigated for finding
this offset, these were manual and automatic, both
of which are described below.

.50

Offset

MeanThreshold

Forgery

Genuine

Similarity Scale

=

1

Similarity of an unknown
to the training set.

Figure 4: Threshold creation.

3.1 Manual Classification

Manual classification uses a fixed offset o to move
µ down the similarity scale. This offset does not
compute a threshold directly, but instead is used
to generate a false acceptance rate (FAR) versus
false rejection rate (FRR) curve, from which the
best threshold (found at the equal error rate) is
computed. This offset is then used for all signature
sets, with the class of an unknown signature being
determined by equation (10).

class =

{
genuine if score ≥ µ− o

forgery if score < µ− o
(10)

The disadvantage of the manual method is that
it requires a range of experiments to find a value
which minimises the FAR and the FRR. The use
of this method was to make AFT comparable to
the graph matching technique [3], which also uses
this manual offset.

3.2 Automatic Classification

Automatic classification is a heuristic method for
finding an offset based on the training signatures.
The offset is found in the same manner that AFT
uses for calculating the lower sample standard de-
viation SL, where only the values below µ are used.
These values are the similarity scores from equa-
tion (9) when all training signatures are compared
to each other. The class of an unknown signature
is then determined by equation (11).

class =

{
genuine if score ≥ µ− SL

forgery if score < µ− SL

(11)

4 Experiments

The evaluation of AFT was carried out on two
datasets of signatures, both of which comprise of
skilled forgeries. A skilled forgery is one in which
the forger has both seen and practised writing a

Figure 5: Correlation between FAR and FRR

genuine signature, making it visually similar to the
original. Because of this visual similarity, there is
a substantial increase in difficulty of being able to
classifying an unknown signature, as opposed to
signatures of the random or simple variations [11].

The first dataset, CEDAR [12], is made up of 55
signature sets, where each set consists of 24 genuine
signatures and 24 forgeries. Initially this dataset
was in grey-scale, but was converted to binary us-
ing a classic iterative thresholding method [13],
which was chosen for its simplicity and robust-
ness. The second dataset was GPDS [14], which
was already binarised. This dataset contains 39
signature sets, where each set consists of 24 genuine
signatures and 30 forgeries.

The experiments for both of these datasets were
carried out using three spatial pyramid levels and
an 8×4 grid for the finest level of region sampling.
The final accuracy is calculated by equation (12)
and is the middle point between the genuine and
forgery classification accuracies.

accuracy =
(1− FAR) + (1− FRR)

2
(12)

4.1 CEDAR Results

For each signature set in CEDAR, 16 signatures
were randomly selected as training samples, while
the remaining 8 genuine signatures along with the
24 forgeries were used for testing. The use of 16 sig-
natures for training was to make the results compa-
rable to [3], [5], and [10]. This was then repeated 10
times for each set. By varying the offset, the error
trade-off can be plotted (See Figure 5), allowing
the offset that minimises both the FAR and FRR
to be identified and used for the final classification
accuracy.



The results in Table 1 show that AFT produces
competitive results to the graph matching method,
with the manual method achieving an accuracy ap-
proximately 2% greater than the automatic method.
AFT, in comparison to GSC, has a significant ac-
curacy increase of approximately 14%.

Table 1: CEDAR Results

Method 1-FAR 1-FRR Accuracy

GSC [5] 80.5 77.55 78.5

Zernike [10] 83.7 83.4 83.6

Graph Matching [3] 91.8 92.3 92.1

AFT (Auto) 89.04 91.84 90.44

AFT (Manual) 92.58 92.25 92.42

4.2 GPDS Results

In GPDS, training was carried out in the same
fashion as CEDAR, except only 12 randomly se-
lected signatures were used, so that the results
would be comparable to [4]. The remaining 12
genuine signatures and 30 forgeries were then used
for testing. This was once again repeated 10 times
for each set. The offset that minimises both the
FAR and FRR was then found in the same way as
CEDAR, and was used for the final classification
accuracy.

Table 2 shows that AFT can match the classifi-
cation accuracy that the more complex method
DWT is able to achieve. Once again, there is ap-
proximately a 2% accuracy difference between the
manual and automatic methods.

Table 2: GPDS Results

Method 1-FAR 1-FRR Accuracy

DWT (Random) [4] 82.08 80.69 81.39

DWT [4] 88.11 86.74 87.43

AFT (Auto) 82.76 89.21 85.99

AFT (Manual) 85.79 89.52 87.66

4.3 Reduced Training Size

AFT also remains fairly stable when the number
of training signatures is varied, showing that it
is remarkably resilient. This is shown in Figures
6 and 7. The manual method in both CEDAR
and GPDS required the offset to be adjusted with
relation to the change in the number of training
signatures. This change allows the classification
accuracy to remain stable when 8 or more training
signatures were used; when less than 8 signature
were used, the accuracy dropped off fairly quickly.
The automatic method tended to consistently fol-
low the same pattern, except it dropped off at
a much quicker rate. The stability of the clas-
sification accuracy when the number of training
signatures varied was not tested in [3], [4], [5], and

[10], therefore, the comparable ability of AFT in
this regard cannot be determined.

Figure 6: CEDAR stability when the number of

training signatures is varied. The standard training

amount is 16 signatures.

Figure 7: GPDS stability when the number of training

signatures is varied. The standard training amount is

12 signatures.

5 Conclusions and Future Work

This paper presented a novel method for off-line
signature verification by introducing what has been
termed adaptive feature thresholding. AFT is de-
signed to greatly restrict how a binary feature vec-
tor is created, improving its representative simi-
larity in relation to the training signatures. Along
with AFT, we found that the combination of spa-
tial pyramids and equimass sampling grids helped
to improve the extraction and representation of a
signature through the use of the gradient direction.
Using these methods, AFT achieved a classification
accuracy that is competitive to both the graph
matching and the DWT methods. As well as this,
AFT also remains computationally less complex
due to using only one image feature as opposed to
the ensemble of image features that other methods
tend to use. Experimentation was carried out using



two different approaches, manual and automatic.
Manual tended to achieve an accuracy that was 2%
greater than automatic. It was also shown that
this method remained relatively stable when the
number of training signatures was greater than 8.

Possible future work would be to test AFT with
other image features, as well as combining it with
the graph matching method, as this may further
enhance the classification accuracy. The use of
AFT in other areas of research is also possible
due to its generalist nature, and may prove to be
beneficial.
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