4,900 research outputs found

    On Chase Termination Beyond Stratification

    Full text link
    We study the termination problem of the chase algorithm, a central tool in various database problems such as the constraint implication problem, Conjunctive Query optimization, rewriting queries using views, data exchange, and data integration. The basic idea of the chase is, given a database instance and a set of constraints as input, to fix constraint violations in the database instance. It is well-known that, for an arbitrary set of constraints, the chase does not necessarily terminate (in general, it is even undecidable if it does or not). Addressing this issue, we review the limitations of existing sufficient termination conditions for the chase and develop new techniques that allow us to establish weaker sufficient conditions. In particular, we introduce two novel termination conditions called safety and inductive restriction, and use them to define the so-called T-hierarchy of termination conditions. We then study the interrelations of our termination conditions with previous conditions and the complexity of checking our conditions. This analysis leads to an algorithm that checks membership in a level of the T-hierarchy and accounts for the complexity of termination conditions. As another contribution, we study the problem of data-dependent chase termination and present sufficient termination conditions w.r.t. fixed instances. They might guarantee termination although the chase does not terminate in the general case. As an application of our techniques beyond those already mentioned, we transfer our results into the field of query answering over knowledge bases where the chase on the underlying database may not terminate, making existing algorithms applicable to broader classes of constraints.Comment: Technical Report of VLDB 2009 conference versio

    The data-exchange chase under the microscope

    Full text link
    In this paper we take closer look at recent developments for the chase procedure, and provide additional results. Our analysis allows us create a taxonomy of the chase variations and the properties they satisfy. Two of the most central problems regarding the chase is termination, and discovery of restricted classes of sets of dependencies that guarantee termination of the chase. The search for the restricted classes has been motivated by a fairly recent result that shows that it is undecidable to determine whether the chase with a given dependency set will terminate on a given instance. There is a small dissonance here, since the quest has been for classes of sets of dependencies guaranteeing termination of the chase on all instances, even though the latter problem was not known to be undecidable. We resolve the dissonance in this paper by showing that determining whether the chase with a given set of dependencies terminates on all instances is coRE-complete. For the hardness proof we use a reduction from word rewriting systems, thereby also showing the close connection between the chase and word rewriting. The same reduction also gives us the aforementioned instance-dependent RE-completeness result as a byproduct. For one of the restricted classes guaranteeing termination on all instances, the stratified sets dependencies, we provide new complexity results for the problem of testing whether a given set of dependencies belongs to it. These results rectify some previous claims that have occurred in the literature.Comment: arXiv admin note: substantial text overlap with arXiv:1303.668

    Foundations of SPARQL Query Optimization

    Full text link
    The SPARQL query language is a recent W3C standard for processing RDF data, a format that has been developed to encode information in a machine-readable way. We investigate the foundations of SPARQL query optimization and (a) provide novel complexity results for the SPARQL evaluation problem, showing that the main source of complexity is operator OPTIONAL alone; (b) propose a comprehensive set of algebraic query rewriting rules; (c) present a framework for constraint-based SPARQL optimization based upon the well-known chase procedure for Conjunctive Query minimization. In this line, we develop two novel termination conditions for the chase. They subsume the strongest conditions known so far and do not increase the complexity of the recognition problem, thus making a larger class of both Conjunctive and SPARQL queries amenable to constraint-based optimization. Our results are of immediate practical interest and might empower any SPARQL query optimizer

    Evaluation of an Early Classic Round Structure at Santa Rita Corozal, Belize

    Get PDF
    Round structures in the Maya area are an architectural form that is not well understood, in part due to the relatively few examples recovered through archaeological excavations. The site of Santa Rita Corozal, Belize offers one of the few examples of an Early Classic Period round structure (Structure 135) in the Maya region, one that is distinctive in its timing and architectural form. This thesis seeks to compare Structure 135 with the patterns of round structures identified in the Preclassic and Terminal/early Postclassic Periods, when there are comparatively more examples and to pinpoint the multiple construction periods evidenced in the excavations to define the changes to the structure over time. Based on this research, Structure 135 at Santa Rita Corozal does not clearly conform to earlier or later patterns of round structures in the Maya region and its use before abandonment and eventual transformation to a rectilinear shape was shorter than previously thought. This research also offers insights into the need for the contextual analysis of ceramics, and the difficulties of assuming context through the use of construction fill, even with a clear cultural formation process

    Detecting Decidable Classes of Finitely Ground Logic Programs with Function Symbols

    Get PDF
    In this article, we propose a new technique for checking whether the bottom-up evaluation of logic programs with function symbols terminates. The technique is based on the definition of mappings from arguments to strings of function symbols, representing possible values which could be taken by arguments during the bottom-up evaluation. Starting from mappings, we identify mapping-restricted arguments, a subset of limited arguments, namely arguments that take values from finite domains. Mapping-restricted programs, consisting of rules whose arguments are all mapping restricted, are terminating under the bottom-up computation, as all of its arguments take values from finite domains. We show that mappings can be computed by transforming the original program into a unary logic program: this allows us to establish decidability of checking if a program is mapping restricted. We study the complexity of the presented approach and compare it to other techniques known in the literature. We also introduce an extension of the proposed approach that is able to recognize a wider class of logic programs. The presented technique provides a significant improvement, as it can detect terminating programs not identified by other criteria proposed so far. Furthermore, it can be combined with other techniques to further enlarge the class of programs recognized as terminating under the bottom-up evaluation. </jats:p
    corecore