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Abstract
The chase procedure is a fundamental algorithmic tool in database theory with a variety of applications. A key problem 
concerning the chase procedure is all-instances chase termination: for a given set of tuple-generating dependencies (TGDs), 
is it the case that the chase terminates for every input database? In view of the fact that this problem is, in general, undecid-
able, it is natural to ask whether well-behaved classes of TGDs, introduced in different contexts, ensure decidability. It has 
been recently shown that the problem is decidable for the restricted (a.k.a. standard) version of the chase, and linear TGDs, 
a prominent class of TGDs that has been introduced in the context of ontological query answering, under the assumption 
that only one atom appears in TGD-heads. We provide an alternative proof for this result based on Monadic Second-Order 
Logic, which we believe is simpler that the ones obtained from the literature.

1 Introduction

The chase procedure (or simply chase) is a fundamental 
algorithmic tool that has been successfully applied to several 
database problems such as computing data exchange solu-
tions [14], query answering under constraints [9], contain-
ment of queries under constraints [1], and checking logical 
implication of constraints [5, 22], to name a few. It accepts 
as an input a database D and a set T  of constraints—which, 
for this work, are tuple-generating dependencies (TGDs) 
of the form ∀x̄∀ȳ(𝜙(x̄, ȳ) → ∃z̄𝜓(x̄, z̄)) with � and � being 
conjunctions of atoms – and, if it terminates, its result is 
a finite instance DT  that is a universal model of D and T  , 
i.e., is a model that can be homomorphically mapped into 
every other model of D and T  . This is the reason for the 
ubiquity of the chase in database theory. Indeed, many key 

database problems can be solved by simply exhibiting a uni-
versal model. And this is not only in theory. Despite the fact 
that the instance constructed by the chase can be very large, 
efficient implementations of the chase procedure have been 
successfully applied during the last few years in many dif-
ferent contexts [6, 20, 25, 26].

Given a database D and a set T  of TGDs, roughly speak-
ing, the chase adds new atoms to D (possibly involving null 
values that act as witnesses for the existentially quantified 
variables) until the final result satisfies T  . Here is a simple 
example of how the chase procedure works.

Example 1 Given the database D = {R(c)} , and the TGDs

the database atom triggers the first TGD, and the chase adds 
in D the atom P(c,⊥1) , which in turn triggers the second 
TGD and R(⊥1) is added, where ⊥1 is a labeled null repre-
senting some unknown value.

However, the atom R(⊥1) triggers again the first TGD, 
and the chase adds the atom P(⊥1,⊥2) , which triggers again 
the second TGD.

The result of the chase is eventually the infinite instance

where ⊥1,⊥2,⊥3,⋯ are labeled null values.   ◻

∀x(R(x) → ∃y P(x, y)) and ∀x∀y(P(x, y) → R(y)),

{R(c),P(c,⊥1)} ∪
⋃
i>0

{R(⊥i),P(⊥i,⊥i+1)},
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1.1  The Challenge of Non‑termination

As said above, there are nowadays efficient implementa-
tions of the chase that allows us to solve central database 
problems by adopting a materialization-based approach [6, 
20, 25, 26]. But, of course, for this to be feasible in prac-
tice we need a guarantee that the chase terminates, which, 
as shown by Example 1, it is not always the case. This fact 
motivated a long line of research on identifying fragments 
of TGDs that ensure the termination of the chase proce-
dure, for every input database. A prime example is the 
class of weakly-acyclic TGDs [14], the standard language 
for data exchange purposes, that guarantees the termina-
tion of the semi-oblivious and restricted (a.k.a. standard) 
chase. A similar formalism, called constraints with strati-
fied-witness, has been proposed in [13]. Inspired by weak-
acyclicity, the notion of rich-acyclicity has been proposed 
in [19], which guarantees the termination of the oblivious 
chase. Many other sufficient conditions can be found in the 
literature; see, for example, [12, 13, 17, 18, 23, 24]. At this 
point, let us note that the restricted chase applies a TGD 
only if it is necessary, i.e., only if the TGD is violated, 
while the (semi-)oblivious chase applies TGDs whenever 
the body is satisfied, without checking whether the head 
is satisfied.

With so much effort spent on identifying sufficient 
conditions for the termination of the chase procedure, the 
question that comes up is whether a sufficient condition 
that is also necessary exists. In other words, given a set T  
of TGDs, is it possible to decide whether, for every data-
base D, the chase on D and T  terminates? This has been 
studied in [15], and has been shown that the answer is neg-
ative, no matter which version of the chase we consider, 
namely the oblivious, semi-oblivious and restricted chase.

The undecidability proof in [15] relies on a sophisti-
cated set of TGDs that goes beyond existing well-behaved 
classes of TGDs that enjoy certain syntactic properties, 
which in turn ensure useful model-theoretic properties. 
Such well-behaved classes of TGDs have been proposed in 
the context of ontological reasoning. The two main para-
digms that led to robust TGD-based languages are guard-
edness [2, 9, 10] and stickiness [11]. A TGD is guarded if 
the left-hand side of the implication, known as the body 
of the TGD, has an atom that contains (or “guards”) all 
the universally quantified variables. If a TGD has only 
one body-atom, which is trivially a guard, then is called 
linear; the class of linear TGDs is actually the main con-
cern of the present work. On the other hand, sticky sets 
of TGDs are inherently unguarded. The key idea underly-
ing stickiness can be described as follows: variables that 
appear more than once in the body of a TGD should be 
inductively propagated (or “stick”) to every atom in the 

right-hand side (the head) of the TGD. Observe that the 
set of TGDs given in Example 1 is both guarded (actu-
ally linear) and sticky; notice that stickiness holds trivially 
since every body-variable occurs only once.

The fact that the set of TGDs given in the undecidability 
proof of [15] is far from being guarded (and therefore linear) 
or sticky raised the following question: is the chase termi-
nation problem, as described above, decidable for linear, 
guarded or sticky sets of TGDs? This question is rather well-
understood for the (semi-)oblivious chase. In the case of lin-
ear TGDs, the problem is PSPACE-complete, and becomes 
2EXPTIME-complete for guarded TGDs [7]. The sticky case 
has been recently addressed in [8], where it is shown that 
the problem is PSPACE-complete. On the other hand, when 
it comes to the more subtle case of the restricted chase, the 
problem has been studied only for single-head TGDs, i.e., 
TGDs with only one atom in the head, while the general case 
remains open. It has been recently shown that the problem 
is decidable for single-head guarded (and hence linear) and 
sticky TGDs [16]. The same result for single-head linear 
TGDs has been independently shown in [21].

1.2  Our Main Objective

In this work, we concentrate on single-head linear TGDs, 
and provide an alternative proof for the decidability of the 
restricted chase termination problem, which we believe is 
simpler than the ones obtained from the literature [16, 21]. 
More precisely, we focus on the following problem: given a 
set T  of single-head linear TGDs, is it the case that for every 
database D, every restricted chase derivation of D w.r.t. T  is 
finite? Note that, in general, it might be the case that some 
derivations are finite and some others are not, depending on 
the order that the TGDs are being triggered, which is not the 
case for the (semi-)oblivious chase. The reason for this non-
deterministic behavior is the fact that, as explained above, 
the restricted chase applies a TGD only if it is necessary, 
whereas the (semi-)oblivious chase applies TGDs whenever 
the body is satisfied, without checking whether the head is 
satisfied, which ensures a deterministic behavior.

As mentioned above, the decidability of this problem 
has been recently shown independently in [16, 21]. In fact, 
[16] shows that the problem is decidable for the class of 
single-head guarded TGDs, which generalizes single-head 
linear TGDs. This is done via a reduction to the satisfiabil-
ity problem of Monadic Second-Order Logic (MSOL) over 
infinite trees of bounded degree. On the other hand, [21] 
concentrates on the class of single-head linear TGDs, and 
the decidability of the restricted chase termination problem 
is shown by relying on derivation trees, a notion that was 
originally introduced in the context of ontological query 
answering [3]. Let us also say that the proof given in [16] 
for single-head sticky TGDs, which is via a reduction to the 
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emptiness problem of deterministic Büchi automata, can be 
converted into a proof for single-head linear TGDs.

Although several different proofs for the decidability of 
the restricted chase termination problem for single-head lin-
ear TGDs can be obtained from the literature, we strongly 
believe that a proof based on MSOL that directly exploits 
the linearity of the TGDs is the natural way to go. This will 
provide a neat solution to the problem in question via stand-
ard means, which is simpler than the existing ones. The main 
objective of this work is to provide such a proof.

2  Preliminaries

We consider the disjoint countably infinite sets � , � , and � 
of constants, (labeled) nulls, and variables, respectively. We 
refer to constants, nulls and variables as terms. For n > 0 , 
we may write [n] for the set {1,… , n}.

Relational Databases. A schema � is a finite set of rela-
tion symbols (or predicates) with associated arity. We write 
R/n to denote that R has arity n > 0 ; we may also write ��(R) 
for n. A position of � is a pair (R, i), where R∕n ∈ � and 
i ∈ [n] , that identifies the i-th argument of R. An atom over 
� is an expression of the form R(t̄) , where R∕n ∈ � and t̄ 
is an n-tuple of terms. A fact is an atom whose arguments 
consist only of constants. We write R(t̄)[i] for the term of 
R(t̄) at position (R, i), i.e., the i-th element of t̄ . An instance 
over � is a (possibly infinite) set of atoms over � that contain 
constants and nulls, while a database over � is a finite set 
of facts over � . The active domain of an instance I, denoted 
���(I) , is the set of all terms in I.

Substitutions and Homomorphisms. A substitution from 
a set of terms T to a set of terms T ′ is a function h ∶ T → T � 
defined as follows: ∅ is a substitution, and if h is a substitu-
tion, then h ∪ {t ↦ t�} , where t ∈ T  and t� ∈ T � , is a sub-
stitution. The restriction of h to S ⊆ T  , denoted h|S , is the 
substitution {t ↦ h(t) ∶ t ∈ S} . A homomorphism from a set 
of atoms A to a set of atoms B is a substitution h from the 
terms occurring in A to the terms occurring in B such that 
(i) t ∈ � implies h(t) = t , and (ii) R(t1,… , tn) ∈ A implies 
h(R(t1,… , tn)) = R(h(t1),… , h(tn)) ∈ B.

Single-Head Tuple-Generating Dependencies. A single-
head tuple-generating dependency � is a constant-free first-
order sentence of the form

where x̄, ȳ, z̄ are tuples of variables of � , 𝜙(x̄, ȳ) is a conjunc-
tion of atoms, and R(x̄, z̄) is a single atom. For brevity, we 
write � as 𝜙(x̄, ȳ) → ∃z̄ R(x̄, z̄) , and use comma instead of ∧ 
for joining atoms. We refer to 𝜙(x̄, ȳ) and R(x̄, z̄) as the body 
and head of � , denoted ����(�) and ����(�) , respectively. 
Henceforth, we simply say tuple-generating dependency 

∀x̄∀ȳ(𝜙(x̄, ȳ) → ∃z̄ R(x̄, z̄)),

(TGD) instead of single-head TGD. The frontier of the TGD 
� , denoted ��(�) , is the set of variables x̄ , i.e., the variables 
that appear both in the body and in the head of � . Note 
that, by abuse of notation, we sometimes treat a tuple of 
variables as a set of variables. The schema of a set T  of 
TGDs, denoted ���(T) , is the set of predicates occurring in 
T  , and we write ��(T) for the maximum arity over all those 
predicates. An instance I satisfies a TGD � , written I ⊧ 𝜎 , if 
the following holds: whenever there is a homomorphism h 
such that h(����(𝜎)) ⊆ I , then there is h� ⊇ h|��(𝜎) such that 
h�(����(�)) ∈ I . By abuse of notation, we may treat a con-
junction of atoms as a set. The instance I satisfies a set T  of 
TGDs, written I ⊧ T  , if I ⊧ 𝜎 for each � ∈ T .

Linearity. A TGD � is called linear if ����(�) consists of 
a single atom [10]. The class of linear TGDs, denoted � , is 
the family of all possible finite sets of linear TGDs.

3  The Restricted Chase Procedure

The chase procedure accepts as input a database D and a set 
T  of TGDs, and constructs an instance that contains D and 
satisfies T  . Central notions in this context are the notion of 
trigger, and the notion of trigger application.

Definition 1 (Chase Trigger) A trigger for a set T  of TGDs 
on an instance I is a pair (�, h) , where � ∈ T  and h is a 
homomorphism from ����(�) to I. We call (�, h) active if 
there is no h� ⊇ h|��(𝜎) such that h�(����(�)) ∈ I . We denote 
by ������(�, h) the atom v(����(�)) , where v is a mapping 
from the variables of ����(�) to � defined as

An application of (�, h) to I returns the instance

and such an application is denoted as I⟨�, h⟩J .   ◻

In the definition of ������(�, h) , each existentially quan-
tified variable x occurring in ����(�) is mapped by v to a 
“fresh” null value of � whose name is uniquely determined 
by the trigger (�, h) and x itself. Thus, given a trigger (�, h) , 
we can unambiguously write down the atom ������(�, h).

The main idea of the restricted chase is, starting from a 
database D, to apply active triggers for the given set T  of 
TGDs on the instance constructed so far, and keep doing 
this until a fixpoint is reached. This is formalized as follows. 
Consider a database D and a set T  of TGDs. We distinguish 
the two cases where the chase is terminating or not:

v(x) =

⎧⎪⎨⎪⎩

h(x) if x ∈ ��(𝜎),

⊥x
𝜎,h

otherwise.

J = I ∪ {������(�, h)},
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– A sequence (Ii)0≤i≤n of instances, with D = I0 and n ≥ 0 , 
is a restricted chase derivation of D w.r.t. T  if: for 
0 ≤ i < n , there is an active trigger (�, h) for T  on Ii with 
Ii⟨�, h⟩Ii+1 , and no active trigger for T  on In.

– A sequence (Ii)i≥0 of instances, with D = I0 , is a restricted 
chase derivation of D w.r.t. T  if, for i ≥ 0 , there exists 
an active trigger (�, h) for T  on Ii such that Ii⟨�, h⟩Ii+1 . 
Moreover, (Ii)i≥0 is called fair if, for each i ≥ 0 , and every 
active trigger (�, h) for T  on Ii , there exists j > i such 
that (�, h) is not active for T  on Ij . In a fair chase deriva-
tion all the active triggers will eventually be deactivated, 
which is not true for unfair ones.

A restricted chase derivation is called valid if it is finite, or 
infinite and fair. Infinite but unfair restricted chase deriva-
tions are not valid since they do not serve the main purpose 
of the chase procedure, i.e., build an instance that satisfies 
the given set of TGDs. Since we deal only with the restricted 
chase, in the rest of the paper we may simply say chase deri-
vation meaning restricted chase derivation.

3.1  Chase Termination Problem

It is well-known that due to the existentially quantified vari-
ables, a valid chase derivation may be infinite. This is true 
even for very simple settings: it is easy to verify that the only 
chase derivation of D = {R(a, b)} w.r.t. the set consisting of 
the single TGD R(x, y) → ∃z R(y, z) is infinite. The key ques-
tion is, given a set T  of TGDs, can we check whether, for 
every database D, every valid chase derivation of D w.r.t. T  
is finite? Before formalizing this problem, let us recall a 
central class of TGDs:

The superscript ��� in ℂ𝕋 ���
∀∀

 indicates that we concentrate on 
restricted chase derivations, while the subscript ∀∀ indicates 
that we consider every database, and every valid chase deri-
vation. The main problem tackled in this work is defined as 
follows, where ℂ is a class of TGDs:

The above decision problem is, in general, undecidable. 
In fact, assuming that ��� is the class of arbitrary (single-
head) TGDs, we have the following undecidability result:

ℂ𝕋
���
∀∀

=

⎧⎪⎨⎪⎩
T ∶

for every database D,

every valid restricted chase derivation

of D w.r.t. T is finite.

⎫⎪⎬⎪⎭

Theorem 1 �����
∀∀
(���) is undecidable, even if we focus on 

schemas with binary predicates.

Note that the undecidability of �����
∀∀
(���) has been 

originally shown in [15] for schemas with binary and 
ternary predicates. The undecidability for schemas with 
binary predicates has been recently shown in [4] by adapt-
ing the proof of [15]. On the other hand, when it comes to 
the class of linear TGDs, we know that the above problem 
is decidable:

Theorem 2 �����
∀∀
(�) is decidable in elementary time.

The above result has been recently shown independently 
in [16, 21]. In fact, [16] shows that the problem is decid-
able for the class of guarded TGDs, which generalizes 
linear TGDs. This is done via a reduction to the satisfi-
ability problem of Monadic Second-Order Logic (MSOL) 
over infinite trees of bounded degree. On the other hand, 
[21] concentrates on the class of linear TGDs, and the 
decidability of the chase termination problem is shown 
by relying on derivation trees, a notion that was originally 
introduced in the context of ontological query answering 
[3]. The goal of the present work is to provide an alterna-
tive proof for Theorem 2 that relies on standard means, 
and is simpler than the ones obtained from [16, 21]. This 
is done by exploiting MSOL.

3.2  Dealing With Fairness

As one might expect, to prove the decidability of �����
∀∀
(�) , 

we focus on its complement and show that, for a set T  of 
linear TGDs, we can decide whether there exists a data-
base D such that there is a fair infinite chase derivation of D 
w.r.t. T  . This is precisely how Theorem 2 is shown in [16, 
21]. However, as it has been already observed in [16, 21], 
the difficulty is to ensure fairness. Interestingly, we know 
the following:

Theorem 3 Consider a database D, and a set T  of single-
head linear TGDs. If there exists an infinite restricted chase 
derivation of D w.r.t. T  , then there exists a fair one.

The above has been independently shown in [16, 21]. 
Notice, however, that the proof of [21] applies only to linear 
TGDs, while [16] shows, via a more sophisticated proof, that 
the above holds for arbitrary single-head (not necessarily 
linear) TGDs. At this point, let us stress that Theorem 3 does 
not hold for TGDs that can have a conjunction of atoms in 
the head. This is illustrated by the following example:

Example 2 Consider the set T  of TGDs consisting of
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There is an infinite restricted chase derivation of {R(a, b, b)} 
w.r.t. T  ; apply only the first TGD. However, every valid 
chase derivation of {R(a, b, b)} w.r.t. T  is finite.1   ◻

The above discussion reveals the subtlety of the restricted 
chase, and explains why Theorem 2 is stated only for single-
head TGDs. The decidability status of �����

∀∀
(�∧) , where �∧ 

is the class of arbitary linear TGDs, where the head can be a 
conjunction of atoms, remains an open problem.

From Theorem 3, we get the following useful corollary:

Corollary 1 Let T ∈ � . The following are equivalent: 

1. T ∉ ℂ𝕋
���
∀∀

.
2. There is a database D such that there exists an infinite 

chase derivation of D w.r.t. T .

Therefore, the complement of �����
∀∀
(�) boils down to the 

problem of checking whether there is a database D such that 
there exists an infinite chase derivation � of D w.r.t. the given 
set T ∈ � , without having to ensure that � is fair.

3.3  Plan of Attack

Our proof for Theorem 2 consists of two main steps: 

1. We first establish, by relying on Corollary 1, that for a 
set T ∈ � , T ∉ ℂ𝕋

���
∀∀

 iff there exists a so-called chase 
path for T  , which essentially encodes a path-like infinite 
chase derivation of a singleton database w.r.t. T .

2. We then show that chase paths are MSOL-definable, i.e., 
we can devise an MSOL sentence ΦT  over infinite paths 
that is satisfiable iff a chase path for T  exists.

The rest of the paper is devoted to giving further details 
concerning the above two steps.

4  Non‑termination via Chase Paths

We start by introducing the notion of chase path. Given a 
trigger (�, h) for T  on some instance I, and an atom � , we 
say that � stops ������(�, h) , written � � ������(�, h) , if there 
exists a homomorphism h′ such that 

R(x, y, y) →∃z R(x, z, y),R(z, y, y)

R(x, y, z) →R(z, z, z).

1. h�(������(�, h)) = � , and
2. h�(h(x)) = h(x) for each x ∈ ��(�).

Roughly speaking, � �������(�, h) means that in the presence 
of � the atom ������(�, h) is superfluous in the sense that the 
trigger (�, h) for T  on an instance that contains � is not active 
due to the presence of � . This is summarized in the following 
fact, which is easy to verify:

Fact 1 Let T ∈ � , and (�, h) be a trigger for T  on some 
instance I over ���(T) . The following are equivalent: 

1. (�, h) is active.
2. There is no � ∈ I such that � � ������(�, h).

We are now ready to introduce the notion of chase path.

Definition 2 (Chase Path) Let T ∈ � . A chase path for T  
is an infinite sequence (�i)i≥0 of atoms over ���(T) , which 
contain constants and nulls, such that: 

1. �0 is a fact, i.e., it contains only constants.
2. For i > 0 , there is a trigger (�, h) for T  on {�i−1} with 

(a) �i = ������(�, h) , and
(b) there is no 0 ≤ j < i such that �j �������(�, h).

  ◻

Our goal is to show Lemma 1 given below. But first, we 
need to recall a useful notion known as the chase relation 
[11], which essentially describes how the atoms generated 
during the chase depend on each other. Consider a chase der-
ivation � = (Ii)i≥0 of a database D w.r.t. a set T  of TGDs such 
that, for i ≥ 0 , Ii⟨�i, hi⟩Ii+1 , i.e., Ii+1 = Ii ∪ {������(�i, hi)} . 
The chase relation of � , denoted ≺𝛿 , is a binary relation over ⋃

i≥0 Ii such that 𝛼 ≺𝛿 𝛽 iff there is i ≥ 0 with � ∈ hi(����(�i)) 
and Ii+1⧵Ii = {�}.

Lemma 1 Let T ∈ � . The following are equivalent: 

1. T ∉ ℂ𝕋
���
∀∀

.
2. There exists a chase path for T .

Proof By Corollary 1, it suffices to show that the following 
statements are equivalent: 

1. There exists a database D such that there is an infinite 
chase derivation of D w.r.t. T .

2. There exists a chase path for T .

We first show that (1) ⇒ (2) . Observe that it suffices to show 
that (1) implies that there is a fact � such that there is an 1 Note that [21] provides an example that refutes Theorem 3 even if 

we focus on binary predicates.
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infinite chase derivation �� = ({�0,⋯ , �i})i≥0 , where � = �0 , 
of {�0} w.r.t. T  that enjoys the following property:

Indeed, in this case, for each i > 0 , there is a trigger (�, h) for 
T  on {�i−1} such that (a) �i = ������(�, h) , and (b) (�, h) is an 
active trigger for T  on {�0,… , �i−1} , and thus, by Fact 1, 
there is no 0 ≤ j < i such that �j �������(�, h) . Therefore, 
(�i)i≥0 is a chase path for T  , which in turn implies that 
(1) ⇒ (2) , as needed. It remains to show that (1) implies the 
existence of �� as above.

By hypothesis, there is an infinite chase derivation 
� = (Ii)i≥0 of D w.r.t. T  . Since the TGDs of T  are linear, that 
is, they have only one atom in the body, it is easy to see that 
the chase relation ≺𝛿 is essentially a forest with its roots 
being the atoms of D, i.e., for each � ∈

⋃
i≥0 Ii , 𝛾 ≺𝛿 𝛽 and 

𝛾 ′ ≺𝛿 𝛽 implies � = � � . This allows us, for each � ∈ D , to 
extract from � a (finite or infinite) chase derivation �′

�
 of {�} 

w.r.t. T  . Moreover, since � is infinite, there exists at least one 
� ∈ D such that �′

�
 is infinite. Therefore, �′

�
 is an infinite 

chase derivation of {�} w.r.t. T  . However, �′
�
 does not neces-

sarily enjoy (⋆) . Note that ≺𝛿′
𝛼
 is essentially a tree T� rooted 

at � . It is not difficult to verify that the out-degree of T� is 
bounded by |T| ⋅ ��(T)��(T) , and therefore finite since T  is 
finite. Since T� is infinite, by König’s Lemma, we get that in 
T� there is an infinite path �0, �1, �2,… , where �0 = �.2 
Clearly,  𝛼i ≺𝛿�

𝛼
𝛼i+1 ,  for  each i ≥ 0 .  Therefore, 

�� = ({�0,… , �i})i≥0 is an infinite chase derivation of {�} 
w.r.t. T  that enjoys (⋆) , and the claim follows.

Let us now show that (2) ⇒ (1) . By hypothesis, there is a 
chase path (�i)i≥0 for T  . Let � = (Ii)i≥0 , where Ii = {�0,… , �i} . 
It is clear that, for each i > 0 , there is a trigger (�, h) for T  on 
Ii−1 such that Ii−1⟨�, h⟩Ii . Moreover, there is no 
� ∈ {�0,… , �i−1} such that � �������(�, h) ; thus, by Fact 1, 
(�, h) is active. This implies that � is an infinite chase derivation 
of the singleton database {�0} w.r.t. T  .   ◻

5  Chase Paths are MSOL‑definable

We proceed to show that the existence of a chase path for a 
set T ∈ � can be checked via an MSOL sentence. In other 
words, we are going to argue that there exists an MSOL 
sentence ΦT  such that ΦT  is satisfiable over infinite paths iff 
there is a chase path for T  . Instead of giving the rather long 

(⋆) for each i ≥ 0, 𝛼i ≺𝛿𝛼
𝛼i+1.

and tedious sentence ΦT
 , we describe what it does, and it 

will be apparent that is indeed expressible in MSOL.

5.1  Atom Encoding

One may think that, for a set T ∈ � , our MSOL sentence ΦT
 

could directly talk about a chase path for T  . But this is not 
going to work for the simple reason that a chase path for T  
consists of infinitely many atoms. We therefore need some-
thing similar to a chase path, i.e., a structure that encodes a 
chase path for T  as a labeled path, but much more parsimo-
nious with respect to the labeling function. To this end, we 
need a convenient encoding for atoms.

We proceed to define a finite alphabet ΛT  that provides 
such an encoding. We write ��T  for the set of all equiva-
lence relations on {f ,m} × {1, 2,… ��(T)} . The desired 
alphabet is defined as the set of triples

Here is the idea underlying this encoding:

– The first element of each triple is a predicate; it simply 
tells us the predicate of the encoded atom.

– Concerning the second element, � indicates that the 
encoded atom is the starting atom of the chase path. If 
an atom is an intermediate one, then the second element 
of the triple tells us from which TGD of T  was generated.

– Finally, for the third element, note that f and m stand 
for “father” and “me”. The idea is that, for example, the 
pair ((m, i), (m, j)) says that the encoded atom has the 
same term at its i-th and j-th position, while the pair 
((m, i), (f, j)) says that the term at the i-th position in the 
atom in question is the same as the term at the j-th posi-
tion of its father in the chase path.

For brevity, given a triple � = (x, y, z) ∈ ΛT  , we write ��(�) 
for the predicate x, ���(�) for y, i.e., the origin of the encoded 
atom, and ��(�) for the equivalence relation z.

5.2  Abstract Chase Paths

It should be intuitively clear that there exists a chase path 
for T  iff the infinite path v0, v1,… can be labeled with triples 
from ΛT  in such a way that: 

1. The label of v0 is of the form (x, �, z) for some predicate 
x ∈ ���(T) , and an equivalence relation z ∈ ��T .

2. For each i > 0 , it holds that 

(a) the atom encoded by the label of vi can be obtained 
via an application of a trigger for T  on the atom 
encoded by the label of vi−1 , and

ΛT = ���(T) × ({�} ∪ T) × ��T.

2 König’s Lemma is a well-known result from graph theory, which 
states that an infinite rooted tree with finite out-degree has an infinite 
directed simple path starting from the root.
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(b) there is no j < i such that the atom encoded by the 
label of vj stops the atom encoded by the label of 
vi.

Such a ΛT -labeled infinite path is a structure that encodes 
a chase path for T  using finitely many labels, which we 
call abstract chase path, for which our MSOL sentence 
could talk about. We proceed to formalize the above 
discussion.

We first need to make precise when a triple �′ is a 
successor of some triple � , which means that the atom 
encoded by �′ can be obtained via an application of a trig-
ger for T  on the atom encoded by the label of � . Consider 
a triple � ∈ ΛT  . A sucessor of � is a triple �� ∈ ΛT  , with 
���(��) = � for some � ∈ T  , such that the following hold; 
for brevity, we write � for ����(�) and � for ����(�)):

– ��(�) is the predicate of �.
– ��(��) is the predicate of �.
– ((m, i), (m, j)) ∈ ��(�) iff ((f , i), (f , j)) ∈ ��(��).
– �[i] = �[j] implies ((f , i), (m, j)) ∈ ��(��).
– �[i] = �[j] implies ((f , i), (f , j)) ∈ ��(��).
– If �[j] is an existentially quantified variable of � , then 

((m, i), (m, j)) ∈ ��(��) iff �[i] = �[j].

We also need to formalize when a triple � stops a triple �′ , 
which essentially means that the atom encoded by � stops 
the atom encoded by �′ . This relies on the notion of correct 
coloring for a pair of triples. Consider two triples �, �� ∈ ΛT  , 
with ��(�) = R∕n , ��(��) = R�∕m , and ���(��) = � for some 
� ∈ T  . A pair of colors (i, j), where i ∈ [n] and j ∈ [m] , is a 
correct coloring for (�, ��) if � is of the form

i.e., � propagates the variable at position (R, i) in ����(�) 
to the position (R�, j) in ����(�) . Given a sequence of triples 
from ΛT  of the form s = �0,… , �n , for n > 0 , a locally cor-
rect coloring for s is a tuple of colors (i0,… , in) such that, 
for each 0 ≤ j < n , (ij, ij+1) is a correct coloring for (�j, �j+1).

Assume now that ���(�n) = � for some TGD � ∈ T  . We 
say that �0 stops �n w.r.t. s, written �0 �s�n , if:

– ��(�0) = ��(�n) ,  and ((m, i), (m, j)) ∈ ��(�n) implies 
((m, i), (m, j)) ∈ ��(�0).

– If ����(�)[j] ∈ ��(�) , then there exists a locally correct 
coloring (i,… , j) for s, and ((m, i), (m, j)) ∈ ��(�0).

The first condition ensures that there exists a homomor-
phism h from the atom encoded by �n to the atom encoded 
by �0 , while the second condition ensures that h is the 
identity on the witnesses for the variables in ��(�).

R(x1,… , xi−1, x,xi+1,… , xn) →

∃z̄ R�(y1,… , yj−1, x, yj+1,… , ym),

We now have all the ingredients needed to formally 
define the notion of abstract chase path:

Definition 3 (Abstract Chase Path) Let T ∈ � . An abstract 
chase path for T  is an infinite ΛT -labeled path (vi)i≥0 , with 
� being the labeling function, such that: 

1. ���(v0) = �.
2. For each i > 0 , it holds that 

(a) �(vi) is a successor of �(vi−1) , and
(b) there is no 0 ≤ j < i such that �(vj) �s�(vi) with 

s = �(vj), �(vj+1),… , �(vi).

  ◻

It should not be difficult to observe the correspondence 
between the two conditions in the definition of chase path 
(Definition 2) and the two conditions in the definition of 
abstract chase path. This allows us to show the following:

Lemma 2 Let T ∈ � . The following are equivalent: 

1. There exists a chase path for T .
2. There exists an abstract chase path for T .

Proof The proof relies on the obvious translation of a chase 
path for T  into an abstract chase path for T  , and vice-versa. 
We proceed to make this explicit.

(1) ⇒ (2). By hypothesis, there exists a chase path (�i)i≥0 
for T  . By definition, for each i > 0 , there exists a trigger 
(�i, hi) for T  on {�i−1} such that �i = ������(�i, hi) , and there 
is no 0 ≤ j < i such that �j ��i . We proceed to construct an 
infinite ΛT -labeled path p = (vi)i≥0 as follows:

– The node v0 is labeled with (x, �, z) , where x is the 
predicate of �0 , and z is the smallest equivalence 
relation on {f ,m} × {1,… , ��(T)} such that, for every 
1 ≤ i < j ≤ ��(x) , �0[i] = �[j] implies ((m, i), (m, j)) ∈ z.

– For each i > 0 , vi is labeled with (x, �i, z) , where x is the 
predicate of �i , and z is the smallest equivalence rela-
tion on {f ,m} × {1,… , ��(T)} such that the following 
hold; we assume that P is the predicate of �i−1:

 (i) for each 1 ≤ j < k ≤ ��(P) , �i−1[j] = �i−1[k] implies 
((f , j), (f , k)) ∈ z,

 (ii) fo r  e a ch  1 ≤ j ≤ ��(P)  a n d  1 ≤ k ≤ ��(x)  , 
�i−1[j] = �i[k] implies ((f , j), (m, k)) ∈ z , and

 (iii) for each 1 ≤ j < k ≤ ��(x) , �i[j] = �i[k] implies 
((m, j), (m, k)) ∈ z.
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This completes the construction of p. It is now not difficult 
to see that p is an abstract chase path for T  . Indeed, condi-
tions 1 and 2a of Definition 3 can be easily verified. Con-
cerning condition 2b, by contradiction, assume there exists 
i > 0 and 0 ≤ j < i such that (with � being the labeling func-
tion of p) �(vj) � s�(vi) with s = �(vj), �(vj+1),… , �(vi) . But 
this implies that �j � �i , which is a contradiction.

(2) ⇒ (1). By hypothesis, there exists an abstract chase 
path p = (vi)i≥0 for T  ; � is the labeling function of p. By 
definition, for each i > 0 , �(vi) is a successor of �(vi−1) , and 
there is no 0 ≤ j < i such that �(vj) � s�(vi) with 
s = �(vj), �(vj+1),… , �(vi).

We inductively construct an infinite sequence (�i)i≥0 of 
atoms over ���(T) , which contain constants and nulls, as 
follows:

– The atom �0 is of the form P(c1,… , cn) , with c1,… , cn 
being constants, where P = ��(�(v0)) , and, for each 
i, j ∈ [n] , ci = cj iff ((m, i), (m, j)) ∈ ��(�(v0)).

– Assume that we have constructed �0, �1,… , �i ; let R 
being the predicate of �i . We define �i+1 as an atom of 
the form P(t1,… , tn) , with t1,… , tn being constants and 
nulls, where P = ��(�(vi+1)) , and

 (i) f o r  e a c h  j, k ∈ [n]  ,  tj = tk  i f f 
((m, j), (m, k)) ∈ ��(�(vi+1)),

 (ii) for each 1 ≤ j ≤ ��(R) and 1 ≤ k ≤ ��(P) ,  i f 
((f , j), (m, k)) ∈ ��(�(vi+1)) , then �i[j] = �i+1[k],

 (iii) for each 1 ≤ j ≤ ��(P) , with � = ���(�(vi+1)) , if 
����(�)[j] is an existentially quantified variable z, 
then �i+1[j] is the null ⊥z

𝜎,h
 where h is the homomor-

phism from ����(�) to �i , which exists since �(vi+1) 
is a successor of �(vi).

This completes the construction of (�i)i≥0 . It is not difficult 
to see that (�i)i≥0 is a chase sequence for T  . Indeed, condi-
tions 1 and 2a of Definition 2 can be easily verified. Con-
cerning condition 2b, by contradiction, assume that there 
exists i > 0 and 0 ≤ j < i such that �j ��i . But this implies 
that �(vj) � s�(vi) with s = �(vj), �(vj+1),… , �(vi) , which is 
a contradiction, and the claim follows.   ◻

5.3  Abstract Chase Paths are MSOL‑definable

Our last task is to show the following:

Lemma 3 Let T ∈ � . There is an MSOL sentence ΦT  such 
that, for an infinite ΛT -labeled path p, it holds that p ⊧ ΦT  
iff p is an abstract chase path for T .

The sentence ΦT  has to check whether an infinite ΛT

-labeled path p = (V ,<) , with � being the labeling function, 

enjoys the two conditions of Definition 3. Let us assume, for 
the moment, that we have available the following formulas:

– �desc(x, y) states that x is a descendant of y.
– �stop(x, y) means that �(x) � s�(y) with s being the 

sequence of triples that label the subpath from x to y.

By exploiting the above formulas, we can devise ΦT  as the 
conjunction �1 ∧ �2a ∧ �2b , where each conjunct checks for 
the corresponding condition of Definition 3. Let

i.e., the set of triples of ΛT
 that correspond to facts, and

We also use unary predicates of the form L� , where � ∈ ΛT  , 
to state that the label of a node should be � . The sentences 
�1 , �2a and �2b are defined as follows:

and

We proceed to give more details about the auxiliary formulas 
used in ΦT  . The formula �desc(x, y) comes from the general 
MSOL toolbox. It simply states that any set of nodes that 
contains x and is closed under <, it also contains y.

The formula �s(x, y) can be easily devised providing that 
we have available a formula �i,j

=
(x, y) , for each i, j ∈ [��(T)] , 

that states the following: the term in the atom encoded by 
the label of x at position i is equal to the term in the atom 
encoded by the label of y at position j. This can be expressed 
in MSOL as follows: there exists a subset A of the nodes in 
the ΛT -labeled path p such that: 

1. A is the path with x and y being its ends, i.e., A is finite, 
x, y have exactly one neighbor in A, and any other node 
in A has exactly two neighbors, and

2. A is a disjoint union of the sets A1,… ,A��(T) such that 
x ∈ Ai , y ∈ Aj , and, for all pairs z,w ∈ A with (z, w) 
being an edge in the path p, z ∈ Ak and w ∈ A

�
 , it holds 

that ((f , k), (m,�)) ∈ ��(�(w)).

Note that above we need to check whether the set of nodes A 
is finite. This can be done by exploiting a formula that comes 
from the general MSOL toolbox. It simply states that p has 

���� =
{
(x, y, z) ∈ ΛT ∣ y = �

}

���� =
{
(�, ��) ∈ ΛT × ΛT ∣ �

� is a successor of �
}
.

𝜓1 = ∀x

((
(¬∃y (y < x)) →

⋁
𝜏∈𝖿𝖺𝖼𝗍

L𝜏(x)

))

𝜓2a = ∀x∀y

(
(x < y) →

⋁
(𝜏,𝜏�)∈𝗌𝗎𝖼𝖼

(L𝜏(x) ∧ L𝜏� (y))

)

�2b =∀x
(
¬∃y

(
�desc(y, x) ∧ �stop(y, x)

))
.
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an infinite directed subpath, starting from some intermediate 
node p, which is disjoint with A.

We are now ready to conclude the proof of Theorem 2. By 
Lemmas 1, 2 and 3, the following are equivalent: 

1. T ∉ ℂ𝕋
���
∀∀

.
2. ΦT  is satisfiable over infinite ΛT -labeled paths.

Since the latter is decidable, Theorem 2 follows.

6  Conclusions

We presented an alternative proof via standard means for 
the decidability of all-instances restricted chase termination 
in the case of single-head linear TGDs. Our proof exploits 
MSOL, and we believe that is simpler than the ones obtained 
from the literature. Despite the simplicity of linear TGDs, 
there are still a couple of challenging questions concerning 
all-instances restricted chase termination that remain open: 

1. What about the exact complexity of the problem?
2. What about arbitrary linear TGDs that can have a con-

junction of atoms in the head?
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