

Edinburgh Research Explorer

All-Instances Restricted Chase Termination for Linear TGDs

Citation for published version:
Gogacz, T, Marcinkowski, J & Pieris, A 2020, 'All-Instances Restricted Chase Termination for Linear TGDs',
KI - Künstliche Intelligenz, vol. 34, no. 4, pp. 465-473. https://doi.org/10.1007/s13218-020-00690-7

Digital Object Identifier (DOI):
10.1007/s13218-020-00690-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
KI - Künstliche Intelligenz

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 22. Jan. 2021

https://www.research.ed.ac.uk/portal/en/persons/tomasz-gogacz(1f5201bb-5840-476b-b53a-e847205c3a9b).html
https://www.research.ed.ac.uk/portal/en/persons/andreas-pieris(41bd3c7d-e9dc-476a-8d9f-d86a8ff4da4b).html
https://www.research.ed.ac.uk/portal/en/publications/allinstances-restricted-chase-termination-for-linear-tgds(5ab61e66-4b86-4510-bf8d-a1b76175199f).html
https://doi.org/10.1007/s13218-020-00690-7
https://doi.org/10.1007/s13218-020-00690-7
https://www.research.ed.ac.uk/portal/en/publications/allinstances-restricted-chase-termination-for-linear-tgds(5ab61e66-4b86-4510-bf8d-a1b76175199f).html

Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2020) 34:465–473
https://doi.org/10.1007/s13218-020-00690-7

TECHNICAL CONTRIBUTION

All‑Instances Restricted Chase Termination for Linear TGDs

Tomasz Gogacz1 · Jerzy Marcinkowski2 · Andreas Pieris3

Received: 6 March 2020 / Accepted: 2 September 2020 / Published online: 26 September 2020
© The Author(s) 2020

Abstract
The chase procedure is a fundamental algorithmic tool in database theory with a variety of applications. A key problem
concerning the chase procedure is all-instances chase termination: for a given set of tuple-generating dependencies (TGDs),
is it the case that the chase terminates for every input database? In view of the fact that this problem is, in general, undecid-
able, it is natural to ask whether well-behaved classes of TGDs, introduced in different contexts, ensure decidability. It has
been recently shown that the problem is decidable for the restricted (a.k.a. standard) version of the chase, and linear TGDs,
a prominent class of TGDs that has been introduced in the context of ontological query answering, under the assumption
that only one atom appears in TGD-heads. We provide an alternative proof for this result based on Monadic Second-Order
Logic, which we believe is simpler that the ones obtained from the literature.

1 Introduction

The chase procedure (or simply chase) is a fundamental
algorithmic tool that has been successfully applied to several
database problems such as computing data exchange solu-
tions [14], query answering under constraints [9], contain-
ment of queries under constraints [1], and checking logical
implication of constraints [5, 22], to name a few. It accepts
as an input a database D and a set T of constraints—which,
for this work, are tuple-generating dependencies (TGDs)
of the form ∀x̄∀ȳ(𝜙(x̄, ȳ) → ∃z̄𝜓(x̄, z̄)) with � and � being
conjunctions of atoms – and, if it terminates, its result is
a finite instance DT that is a universal model of D and T ,
i.e., is a model that can be homomorphically mapped into
every other model of D and T . This is the reason for the
ubiquity of the chase in database theory. Indeed, many key

database problems can be solved by simply exhibiting a uni-
versal model. And this is not only in theory. Despite the fact
that the instance constructed by the chase can be very large,
efficient implementations of the chase procedure have been
successfully applied during the last few years in many dif-
ferent contexts [6, 20, 25, 26].

Given a database D and a set T of TGDs, roughly speak-
ing, the chase adds new atoms to D (possibly involving null
values that act as witnesses for the existentially quantified
variables) until the final result satisfies T . Here is a simple
example of how the chase procedure works.

Example 1 Given the database D = {R(c)} , and the TGDs

the database atom triggers the first TGD, and the chase adds
in D the atom P(c,⊥1) , which in turn triggers the second
TGD and R(⊥1) is added, where ⊥1 is a labeled null repre-
senting some unknown value.

However, the atom R(⊥1) triggers again the first TGD,
and the chase adds the atom P(⊥1,⊥2) , which triggers again
the second TGD.

The result of the chase is eventually the infinite instance

where ⊥1,⊥2,⊥3,⋯ are labeled null values. ◻

∀x(R(x) → ∃y P(x, y)) and ∀x∀y(P(x, y) → R(y)),

{R(c),P(c,⊥1)} ∪
⋃
i>0

{R(⊥i),P(⊥i,⊥i+1)},

 * Andreas Pieris
 apieris@inf.ed.ac.uk

 Tomasz Gogacz
 t.gogacz@mimuw.edu.pl

 Jerzy Marcinkowski
 jma@cs.uni.wroc.pl

1 Institute of Informatics, University of Warsaw, Warsaw,
Poland

2 Institute of Computer Science, University of Wroclaw,
Wroclaw, Poland

3 School of Informatics, University of Edinburgh, Edinburgh,
UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-020-00690-7&domain=pdf

466 KI - Künstliche Intelligenz (2020) 34:465–473

1 3

1.1 The Challenge of Non‑termination

As said above, there are nowadays efficient implementa-
tions of the chase that allows us to solve central database
problems by adopting a materialization-based approach [6,
20, 25, 26]. But, of course, for this to be feasible in prac-
tice we need a guarantee that the chase terminates, which,
as shown by Example 1, it is not always the case. This fact
motivated a long line of research on identifying fragments
of TGDs that ensure the termination of the chase proce-
dure, for every input database. A prime example is the
class of weakly-acyclic TGDs [14], the standard language
for data exchange purposes, that guarantees the termina-
tion of the semi-oblivious and restricted (a.k.a. standard)
chase. A similar formalism, called constraints with strati-
fied-witness, has been proposed in [13]. Inspired by weak-
acyclicity, the notion of rich-acyclicity has been proposed
in [19], which guarantees the termination of the oblivious
chase. Many other sufficient conditions can be found in the
literature; see, for example, [12, 13, 17, 18, 23, 24]. At this
point, let us note that the restricted chase applies a TGD
only if it is necessary, i.e., only if the TGD is violated,
while the (semi-)oblivious chase applies TGDs whenever
the body is satisfied, without checking whether the head
is satisfied.

With so much effort spent on identifying sufficient
conditions for the termination of the chase procedure, the
question that comes up is whether a sufficient condition
that is also necessary exists. In other words, given a set T
of TGDs, is it possible to decide whether, for every data-
base D, the chase on D and T terminates? This has been
studied in [15], and has been shown that the answer is neg-
ative, no matter which version of the chase we consider,
namely the oblivious, semi-oblivious and restricted chase.

The undecidability proof in [15] relies on a sophisti-
cated set of TGDs that goes beyond existing well-behaved
classes of TGDs that enjoy certain syntactic properties,
which in turn ensure useful model-theoretic properties.
Such well-behaved classes of TGDs have been proposed in
the context of ontological reasoning. The two main para-
digms that led to robust TGD-based languages are guard-
edness [2, 9, 10] and stickiness [11]. A TGD is guarded if
the left-hand side of the implication, known as the body
of the TGD, has an atom that contains (or “guards”) all
the universally quantified variables. If a TGD has only
one body-atom, which is trivially a guard, then is called
linear; the class of linear TGDs is actually the main con-
cern of the present work. On the other hand, sticky sets
of TGDs are inherently unguarded. The key idea underly-
ing stickiness can be described as follows: variables that
appear more than once in the body of a TGD should be
inductively propagated (or “stick”) to every atom in the

right-hand side (the head) of the TGD. Observe that the
set of TGDs given in Example 1 is both guarded (actu-
ally linear) and sticky; notice that stickiness holds trivially
since every body-variable occurs only once.

The fact that the set of TGDs given in the undecidability
proof of [15] is far from being guarded (and therefore linear)
or sticky raised the following question: is the chase termi-
nation problem, as described above, decidable for linear,
guarded or sticky sets of TGDs? This question is rather well-
understood for the (semi-)oblivious chase. In the case of lin-
ear TGDs, the problem is PSPACE-complete, and becomes
2EXPTIME-complete for guarded TGDs [7]. The sticky case
has been recently addressed in [8], where it is shown that
the problem is PSPACE-complete. On the other hand, when
it comes to the more subtle case of the restricted chase, the
problem has been studied only for single-head TGDs, i.e.,
TGDs with only one atom in the head, while the general case
remains open. It has been recently shown that the problem
is decidable for single-head guarded (and hence linear) and
sticky TGDs [16]. The same result for single-head linear
TGDs has been independently shown in [21].

1.2 Our Main Objective

In this work, we concentrate on single-head linear TGDs,
and provide an alternative proof for the decidability of the
restricted chase termination problem, which we believe is
simpler than the ones obtained from the literature [16, 21].
More precisely, we focus on the following problem: given a
set T of single-head linear TGDs, is it the case that for every
database D, every restricted chase derivation of D w.r.t. T is
finite? Note that, in general, it might be the case that some
derivations are finite and some others are not, depending on
the order that the TGDs are being triggered, which is not the
case for the (semi-)oblivious chase. The reason for this non-
deterministic behavior is the fact that, as explained above,
the restricted chase applies a TGD only if it is necessary,
whereas the (semi-)oblivious chase applies TGDs whenever
the body is satisfied, without checking whether the head is
satisfied, which ensures a deterministic behavior.

As mentioned above, the decidability of this problem
has been recently shown independently in [16, 21]. In fact,
[16] shows that the problem is decidable for the class of
single-head guarded TGDs, which generalizes single-head
linear TGDs. This is done via a reduction to the satisfiabil-
ity problem of Monadic Second-Order Logic (MSOL) over
infinite trees of bounded degree. On the other hand, [21]
concentrates on the class of single-head linear TGDs, and
the decidability of the restricted chase termination problem
is shown by relying on derivation trees, a notion that was
originally introduced in the context of ontological query
answering [3]. Let us also say that the proof given in [16]
for single-head sticky TGDs, which is via a reduction to the

467KI - Künstliche Intelligenz (2020) 34:465–473

1 3

emptiness problem of deterministic Büchi automata, can be
converted into a proof for single-head linear TGDs.

Although several different proofs for the decidability of
the restricted chase termination problem for single-head lin-
ear TGDs can be obtained from the literature, we strongly
believe that a proof based on MSOL that directly exploits
the linearity of the TGDs is the natural way to go. This will
provide a neat solution to the problem in question via stand-
ard means, which is simpler than the existing ones. The main
objective of this work is to provide such a proof.

2 Preliminaries

We consider the disjoint countably infinite sets � , � , and �
of constants, (labeled) nulls, and variables, respectively. We
refer to constants, nulls and variables as terms. For n > 0 ,
we may write [n] for the set {1,… , n}.

Relational Databases. A schema � is a finite set of rela-
tion symbols (or predicates) with associated arity. We write
R/n to denote that R has arity n > 0 ; we may also write ��(R)
for n. A position of � is a pair (R, i), where R∕n ∈ � and
i ∈ [n] , that identifies the i-th argument of R. An atom over
� is an expression of the form R(t̄) , where R∕n ∈ � and t̄
is an n-tuple of terms. A fact is an atom whose arguments
consist only of constants. We write R(t̄)[i] for the term of
R(t̄) at position (R, i), i.e., the i-th element of t̄ . An instance
over � is a (possibly infinite) set of atoms over � that contain
constants and nulls, while a database over � is a finite set
of facts over � . The active domain of an instance I, denoted
���(I) , is the set of all terms in I.

Substitutions and Homomorphisms. A substitution from
a set of terms T to a set of terms T ′ is a function h ∶ T → T �
defined as follows: ∅ is a substitution, and if h is a substitu-
tion, then h ∪ {t ↦ t�} , where t ∈ T and t� ∈ T � , is a sub-
stitution. The restriction of h to S ⊆ T , denoted h|S , is the
substitution {t ↦ h(t) ∶ t ∈ S} . A homomorphism from a set
of atoms A to a set of atoms B is a substitution h from the
terms occurring in A to the terms occurring in B such that
(i) t ∈ � implies h(t) = t , and (ii) R(t1,… , tn) ∈ A implies
h(R(t1,… , tn)) = R(h(t1),… , h(tn)) ∈ B.

Single-Head Tuple-Generating Dependencies. A single-
head tuple-generating dependency � is a constant-free first-
order sentence of the form

where x̄, ȳ, z̄ are tuples of variables of � , 𝜙(x̄, ȳ) is a conjunc-
tion of atoms, and R(x̄, z̄) is a single atom. For brevity, we
write � as 𝜙(x̄, ȳ) → ∃z̄ R(x̄, z̄) , and use comma instead of ∧
for joining atoms. We refer to 𝜙(x̄, ȳ) and R(x̄, z̄) as the body
and head of � , denoted ����(�) and ����(�) , respectively.
Henceforth, we simply say tuple-generating dependency

∀x̄∀ȳ(𝜙(x̄, ȳ) → ∃z̄ R(x̄, z̄)),

(TGD) instead of single-head TGD. The frontier of the TGD
� , denoted ��(�) , is the set of variables x̄ , i.e., the variables
that appear both in the body and in the head of � . Note
that, by abuse of notation, we sometimes treat a tuple of
variables as a set of variables. The schema of a set T of
TGDs, denoted ���(T) , is the set of predicates occurring in
T , and we write ��(T) for the maximum arity over all those
predicates. An instance I satisfies a TGD � , written I ⊧ 𝜎 , if
the following holds: whenever there is a homomorphism h
such that h(����(𝜎)) ⊆ I , then there is h� ⊇ h|��(𝜎) such that
h�(����(�)) ∈ I . By abuse of notation, we may treat a con-
junction of atoms as a set. The instance I satisfies a set T of
TGDs, written I ⊧ T , if I ⊧ 𝜎 for each � ∈ T .

Linearity. A TGD � is called linear if ����(�) consists of
a single atom [10]. The class of linear TGDs, denoted � , is
the family of all possible finite sets of linear TGDs.

3 The Restricted Chase Procedure

The chase procedure accepts as input a database D and a set
T of TGDs, and constructs an instance that contains D and
satisfies T . Central notions in this context are the notion of
trigger, and the notion of trigger application.

Definition 1 (Chase Trigger) A trigger for a set T of TGDs
on an instance I is a pair (�, h) , where � ∈ T and h is a
homomorphism from ����(�) to I. We call (�, h) active if
there is no h� ⊇ h|��(𝜎) such that h�(����(�)) ∈ I . We denote
by ������(�, h) the atom v(����(�)) , where v is a mapping
from the variables of ����(�) to � defined as

An application of (�, h) to I returns the instance

and such an application is denoted as I⟨�, h⟩J . ◻

In the definition of ������(�, h) , each existentially quan-
tified variable x occurring in ����(�) is mapped by v to a
“fresh” null value of � whose name is uniquely determined
by the trigger (�, h) and x itself. Thus, given a trigger (�, h) ,
we can unambiguously write down the atom ������(�, h).

The main idea of the restricted chase is, starting from a
database D, to apply active triggers for the given set T of
TGDs on the instance constructed so far, and keep doing
this until a fixpoint is reached. This is formalized as follows.
Consider a database D and a set T of TGDs. We distinguish
the two cases where the chase is terminating or not:

v(x) =

⎧⎪⎨⎪⎩

h(x) if x ∈ ��(𝜎),

⊥x
𝜎,h

otherwise.

J = I ∪ {������(�, h)},

468 KI - Künstliche Intelligenz (2020) 34:465–473

1 3

– A sequence (Ii)0≤i≤n of instances, with D = I0 and n ≥ 0 ,
is a restricted chase derivation of D w.r.t. T if: for
0 ≤ i < n , there is an active trigger (�, h) for T on Ii with
Ii⟨�, h⟩Ii+1 , and no active trigger for T on In.

– A sequence (Ii)i≥0 of instances, with D = I0 , is a restricted
chase derivation of D w.r.t. T if, for i ≥ 0 , there exists
an active trigger (�, h) for T on Ii such that Ii⟨�, h⟩Ii+1 .
Moreover, (Ii)i≥0 is called fair if, for each i ≥ 0 , and every
active trigger (�, h) for T on Ii , there exists j > i such
that (�, h) is not active for T on Ij . In a fair chase deriva-
tion all the active triggers will eventually be deactivated,
which is not true for unfair ones.

A restricted chase derivation is called valid if it is finite, or
infinite and fair. Infinite but unfair restricted chase deriva-
tions are not valid since they do not serve the main purpose
of the chase procedure, i.e., build an instance that satisfies
the given set of TGDs. Since we deal only with the restricted
chase, in the rest of the paper we may simply say chase deri-
vation meaning restricted chase derivation.

3.1 Chase Termination Problem

It is well-known that due to the existentially quantified vari-
ables, a valid chase derivation may be infinite. This is true
even for very simple settings: it is easy to verify that the only
chase derivation of D = {R(a, b)} w.r.t. the set consisting of
the single TGD R(x, y) → ∃z R(y, z) is infinite. The key ques-
tion is, given a set T of TGDs, can we check whether, for
every database D, every valid chase derivation of D w.r.t. T
is finite? Before formalizing this problem, let us recall a
central class of TGDs:

The superscript ��� in ℂ𝕋 ���
∀∀

 indicates that we concentrate on
restricted chase derivations, while the subscript ∀∀ indicates
that we consider every database, and every valid chase deri-
vation. The main problem tackled in this work is defined as
follows, where ℂ is a class of TGDs:

The above decision problem is, in general, undecidable.
In fact, assuming that ��� is the class of arbitrary (single-
head) TGDs, we have the following undecidability result:

ℂ𝕋
���
∀∀

=

⎧⎪⎨⎪⎩
T ∶

for every database D,

every valid restricted chase derivation

of D w.r.t. T is finite.

⎫⎪⎬⎪⎭

Theorem 1 �����
∀∀
(���) is undecidable, even if we focus on

schemas with binary predicates.

Note that the undecidability of �����
∀∀
(���) has been

originally shown in [15] for schemas with binary and
ternary predicates. The undecidability for schemas with
binary predicates has been recently shown in [4] by adapt-
ing the proof of [15]. On the other hand, when it comes to
the class of linear TGDs, we know that the above problem
is decidable:

Theorem 2 �����
∀∀
(�) is decidable in elementary time.

The above result has been recently shown independently
in [16, 21]. In fact, [16] shows that the problem is decid-
able for the class of guarded TGDs, which generalizes
linear TGDs. This is done via a reduction to the satisfi-
ability problem of Monadic Second-Order Logic (MSOL)
over infinite trees of bounded degree. On the other hand,
[21] concentrates on the class of linear TGDs, and the
decidability of the chase termination problem is shown
by relying on derivation trees, a notion that was originally
introduced in the context of ontological query answering
[3]. The goal of the present work is to provide an alterna-
tive proof for Theorem 2 that relies on standard means,
and is simpler than the ones obtained from [16, 21]. This
is done by exploiting MSOL.

3.2 Dealing With Fairness

As one might expect, to prove the decidability of �����
∀∀
(�) ,

we focus on its complement and show that, for a set T of
linear TGDs, we can decide whether there exists a data-
base D such that there is a fair infinite chase derivation of D
w.r.t. T . This is precisely how Theorem 2 is shown in [16,
21]. However, as it has been already observed in [16, 21],
the difficulty is to ensure fairness. Interestingly, we know
the following:

Theorem 3 Consider a database D, and a set T of single-
head linear TGDs. If there exists an infinite restricted chase
derivation of D w.r.t. T , then there exists a fair one.

The above has been independently shown in [16, 21].
Notice, however, that the proof of [21] applies only to linear
TGDs, while [16] shows, via a more sophisticated proof, that
the above holds for arbitrary single-head (not necessarily
linear) TGDs. At this point, let us stress that Theorem 3 does
not hold for TGDs that can have a conjunction of atoms in
the head. This is illustrated by the following example:

Example 2 Consider the set T of TGDs consisting of

469KI - Künstliche Intelligenz (2020) 34:465–473

1 3

There is an infinite restricted chase derivation of {R(a, b, b)}
w.r.t. T ; apply only the first TGD. However, every valid
chase derivation of {R(a, b, b)} w.r.t. T is finite.1 ◻

The above discussion reveals the subtlety of the restricted
chase, and explains why Theorem 2 is stated only for single-
head TGDs. The decidability status of �����

∀∀
(�∧) , where �∧

is the class of arbitary linear TGDs, where the head can be a
conjunction of atoms, remains an open problem.

From Theorem 3, we get the following useful corollary:

Corollary 1 Let T ∈ � . The following are equivalent:

1. T ∉ ℂ𝕋
���
∀∀

.
2. There is a database D such that there exists an infinite

chase derivation of D w.r.t. T .

Therefore, the complement of �����
∀∀
(�) boils down to the

problem of checking whether there is a database D such that
there exists an infinite chase derivation � of D w.r.t. the given
set T ∈ � , without having to ensure that � is fair.

3.3 Plan of Attack

Our proof for Theorem 2 consists of two main steps:

1. We first establish, by relying on Corollary 1, that for a
set T ∈ � , T ∉ ℂ𝕋

���
∀∀

 iff there exists a so-called chase
path for T , which essentially encodes a path-like infinite
chase derivation of a singleton database w.r.t. T .

2. We then show that chase paths are MSOL-definable, i.e.,
we can devise an MSOL sentence ΦT over infinite paths
that is satisfiable iff a chase path for T exists.

The rest of the paper is devoted to giving further details
concerning the above two steps.

4 Non‑termination via Chase Paths

We start by introducing the notion of chase path. Given a
trigger (�, h) for T on some instance I, and an atom � , we
say that � stops ������(�, h) , written � � ������(�, h) , if there
exists a homomorphism h′ such that

R(x, y, y) →∃z R(x, z, y),R(z, y, y)

R(x, y, z) →R(z, z, z).

1. h�(������(�, h)) = � , and
2. h�(h(x)) = h(x) for each x ∈ ��(�).

Roughly speaking, � �������(�, h) means that in the presence
of � the atom ������(�, h) is superfluous in the sense that the
trigger (�, h) for T on an instance that contains � is not active
due to the presence of � . This is summarized in the following
fact, which is easy to verify:

Fact 1 Let T ∈ � , and (�, h) be a trigger for T on some
instance I over ���(T) . The following are equivalent:

1. (�, h) is active.
2. There is no � ∈ I such that � � ������(�, h).

We are now ready to introduce the notion of chase path.

Definition 2 (Chase Path) Let T ∈ � . A chase path for T
is an infinite sequence (�i)i≥0 of atoms over ���(T) , which
contain constants and nulls, such that:

1. �0 is a fact, i.e., it contains only constants.
2. For i > 0 , there is a trigger (�, h) for T on {�i−1} with

(a) �i = ������(�, h) , and
(b) there is no 0 ≤ j < i such that �j �������(�, h).

 ◻

Our goal is to show Lemma 1 given below. But first, we
need to recall a useful notion known as the chase relation
[11], which essentially describes how the atoms generated
during the chase depend on each other. Consider a chase der-
ivation � = (Ii)i≥0 of a database D w.r.t. a set T of TGDs such
that, for i ≥ 0 , Ii⟨�i, hi⟩Ii+1 , i.e., Ii+1 = Ii ∪ {������(�i, hi)} .
The chase relation of � , denoted ≺𝛿 , is a binary relation over ⋃

i≥0 Ii such that 𝛼 ≺𝛿 𝛽 iff there is i ≥ 0 with � ∈ hi(����(�i))
and Ii+1⧵Ii = {�}.

Lemma 1 Let T ∈ � . The following are equivalent:

1. T ∉ ℂ𝕋
���
∀∀

.
2. There exists a chase path for T .

Proof By Corollary 1, it suffices to show that the following
statements are equivalent:

1. There exists a database D such that there is an infinite
chase derivation of D w.r.t. T .

2. There exists a chase path for T .

We first show that (1) ⇒ (2) . Observe that it suffices to show
that (1) implies that there is a fact � such that there is an 1 Note that [21] provides an example that refutes Theorem 3 even if

we focus on binary predicates.

470 KI - Künstliche Intelligenz (2020) 34:465–473

1 3

infinite chase derivation �� = ({�0,⋯ , �i})i≥0 , where � = �0 ,
of {�0} w.r.t. T that enjoys the following property:

Indeed, in this case, for each i > 0 , there is a trigger (�, h) for
T on {�i−1} such that (a) �i = ������(�, h) , and (b) (�, h) is an
active trigger for T on {�0,… , �i−1} , and thus, by Fact 1,
there is no 0 ≤ j < i such that �j �������(�, h) . Therefore,
(�i)i≥0 is a chase path for T , which in turn implies that
(1) ⇒ (2) , as needed. It remains to show that (1) implies the
existence of �� as above.

By hypothesis, there is an infinite chase derivation
� = (Ii)i≥0 of D w.r.t. T . Since the TGDs of T are linear, that
is, they have only one atom in the body, it is easy to see that
the chase relation ≺𝛿 is essentially a forest with its roots
being the atoms of D, i.e., for each � ∈

⋃
i≥0 Ii , 𝛾 ≺𝛿 𝛽 and

𝛾 ′ ≺𝛿 𝛽 implies � = � � . This allows us, for each � ∈ D , to
extract from � a (finite or infinite) chase derivation �′

�
 of {�}

w.r.t. T . Moreover, since � is infinite, there exists at least one
� ∈ D such that �′

�
 is infinite. Therefore, �′

�
 is an infinite

chase derivation of {�} w.r.t. T . However, �′
�
 does not neces-

sarily enjoy (⋆) . Note that ≺𝛿′
𝛼
 is essentially a tree T� rooted

at � . It is not difficult to verify that the out-degree of T� is
bounded by |T| ⋅ ��(T)��(T) , and therefore finite since T is
finite. Since T� is infinite, by König’s Lemma, we get that in
T� there is an infinite path �0, �1, �2,… , where �0 = �.2
Clearly, 𝛼i ≺𝛿�

𝛼
𝛼i+1 , for each i ≥ 0 . Therefore,

�� = ({�0,… , �i})i≥0 is an infinite chase derivation of {�}
w.r.t. T that enjoys (⋆) , and the claim follows.

Let us now show that (2) ⇒ (1) . By hypothesis, there is a
chase path (�i)i≥0 for T . Let � = (Ii)i≥0 , where Ii = {�0,… , �i} .
It is clear that, for each i > 0 , there is a trigger (�, h) for T on
Ii−1 such that Ii−1⟨�, h⟩Ii . Moreover, there is no
� ∈ {�0,… , �i−1} such that � �������(�, h) ; thus, by Fact 1,
(�, h) is active. This implies that � is an infinite chase derivation
of the singleton database {�0} w.r.t. T . ◻

5 Chase Paths are MSOL‑definable

We proceed to show that the existence of a chase path for a
set T ∈ � can be checked via an MSOL sentence. In other
words, we are going to argue that there exists an MSOL
sentence ΦT such that ΦT is satisfiable over infinite paths iff
there is a chase path for T . Instead of giving the rather long

(⋆) for each i ≥ 0, 𝛼i ≺𝛿𝛼
𝛼i+1.

and tedious sentence ΦT
 , we describe what it does, and it

will be apparent that is indeed expressible in MSOL.

5.1 Atom Encoding

One may think that, for a set T ∈ � , our MSOL sentence ΦT

could directly talk about a chase path for T . But this is not
going to work for the simple reason that a chase path for T
consists of infinitely many atoms. We therefore need some-
thing similar to a chase path, i.e., a structure that encodes a
chase path for T as a labeled path, but much more parsimo-
nious with respect to the labeling function. To this end, we
need a convenient encoding for atoms.

We proceed to define a finite alphabet ΛT that provides
such an encoding. We write ��T for the set of all equiva-
lence relations on {f ,m} × {1, 2,… ��(T)} . The desired
alphabet is defined as the set of triples

Here is the idea underlying this encoding:

– The first element of each triple is a predicate; it simply
tells us the predicate of the encoded atom.

– Concerning the second element, � indicates that the
encoded atom is the starting atom of the chase path. If
an atom is an intermediate one, then the second element
of the triple tells us from which TGD of T was generated.

– Finally, for the third element, note that f and m stand
for “father” and “me”. The idea is that, for example, the
pair ((m, i), (m, j)) says that the encoded atom has the
same term at its i-th and j-th position, while the pair
((m, i), (f, j)) says that the term at the i-th position in the
atom in question is the same as the term at the j-th posi-
tion of its father in the chase path.

For brevity, given a triple � = (x, y, z) ∈ ΛT , we write ��(�)
for the predicate x, ���(�) for y, i.e., the origin of the encoded
atom, and ��(�) for the equivalence relation z.

5.2 Abstract Chase Paths

It should be intuitively clear that there exists a chase path
for T iff the infinite path v0, v1,… can be labeled with triples
from ΛT in such a way that:

1. The label of v0 is of the form (x, �, z) for some predicate
x ∈ ���(T) , and an equivalence relation z ∈ ��T .

2. For each i > 0 , it holds that

(a) the atom encoded by the label of vi can be obtained
via an application of a trigger for T on the atom
encoded by the label of vi−1 , and

ΛT = ���(T) × ({�} ∪ T) × ��T.

2 König’s Lemma is a well-known result from graph theory, which
states that an infinite rooted tree with finite out-degree has an infinite
directed simple path starting from the root.

471KI - Künstliche Intelligenz (2020) 34:465–473

1 3

(b) there is no j < i such that the atom encoded by the
label of vj stops the atom encoded by the label of
vi.

Such a ΛT -labeled infinite path is a structure that encodes
a chase path for T using finitely many labels, which we
call abstract chase path, for which our MSOL sentence
could talk about. We proceed to formalize the above
discussion.

We first need to make precise when a triple �′ is a
successor of some triple � , which means that the atom
encoded by �′ can be obtained via an application of a trig-
ger for T on the atom encoded by the label of � . Consider
a triple � ∈ ΛT . A sucessor of � is a triple �� ∈ ΛT , with
���(��) = � for some � ∈ T , such that the following hold;
for brevity, we write � for ����(�) and � for ����(�)):

– ��(�) is the predicate of �.
– ��(��) is the predicate of �.
– ((m, i), (m, j)) ∈ ��(�) iff ((f , i), (f , j)) ∈ ��(��).
– �[i] = �[j] implies ((f , i), (m, j)) ∈ ��(��).
– �[i] = �[j] implies ((f , i), (f , j)) ∈ ��(��).
– If �[j] is an existentially quantified variable of � , then

((m, i), (m, j)) ∈ ��(��) iff �[i] = �[j].

We also need to formalize when a triple � stops a triple �′ ,
which essentially means that the atom encoded by � stops
the atom encoded by �′ . This relies on the notion of correct
coloring for a pair of triples. Consider two triples �, �� ∈ ΛT ,
with ��(�) = R∕n , ��(��) = R�∕m , and ���(��) = � for some
� ∈ T . A pair of colors (i, j), where i ∈ [n] and j ∈ [m] , is a
correct coloring for (�, ��) if � is of the form

i.e., � propagates the variable at position (R, i) in ����(�)
to the position (R�, j) in ����(�) . Given a sequence of triples
from ΛT of the form s = �0,… , �n , for n > 0 , a locally cor-
rect coloring for s is a tuple of colors (i0,… , in) such that,
for each 0 ≤ j < n , (ij, ij+1) is a correct coloring for (�j, �j+1).

Assume now that ���(�n) = � for some TGD � ∈ T . We
say that �0 stops �n w.r.t. s, written �0 �s�n , if:

– ��(�0) = ��(�n) , and ((m, i), (m, j)) ∈ ��(�n) implies
((m, i), (m, j)) ∈ ��(�0).

– If ����(�)[j] ∈ ��(�) , then there exists a locally correct
coloring (i,… , j) for s, and ((m, i), (m, j)) ∈ ��(�0).

The first condition ensures that there exists a homomor-
phism h from the atom encoded by �n to the atom encoded
by �0 , while the second condition ensures that h is the
identity on the witnesses for the variables in ��(�).

R(x1,… , xi−1, x,xi+1,… , xn) →

∃z̄ R�(y1,… , yj−1, x, yj+1,… , ym),

We now have all the ingredients needed to formally
define the notion of abstract chase path:

Definition 3 (Abstract Chase Path) Let T ∈ � . An abstract
chase path for T is an infinite ΛT -labeled path (vi)i≥0 , with
� being the labeling function, such that:

1. ���(v0) = �.
2. For each i > 0 , it holds that

(a) �(vi) is a successor of �(vi−1) , and
(b) there is no 0 ≤ j < i such that �(vj) �s�(vi) with

s = �(vj), �(vj+1),… , �(vi).

 ◻

It should not be difficult to observe the correspondence
between the two conditions in the definition of chase path
(Definition 2) and the two conditions in the definition of
abstract chase path. This allows us to show the following:

Lemma 2 Let T ∈ � . The following are equivalent:

1. There exists a chase path for T .
2. There exists an abstract chase path for T .

Proof The proof relies on the obvious translation of a chase
path for T into an abstract chase path for T , and vice-versa.
We proceed to make this explicit.

(1) ⇒ (2). By hypothesis, there exists a chase path (�i)i≥0
for T . By definition, for each i > 0 , there exists a trigger
(�i, hi) for T on {�i−1} such that �i = ������(�i, hi) , and there
is no 0 ≤ j < i such that �j ��i . We proceed to construct an
infinite ΛT -labeled path p = (vi)i≥0 as follows:

– The node v0 is labeled with (x, �, z) , where x is the
predicate of �0 , and z is the smallest equivalence
relation on {f ,m} × {1,… , ��(T)} such that, for every
1 ≤ i < j ≤ ��(x) , �0[i] = �[j] implies ((m, i), (m, j)) ∈ z.

– For each i > 0 , vi is labeled with (x, �i, z) , where x is the
predicate of �i , and z is the smallest equivalence rela-
tion on {f ,m} × {1,… , ��(T)} such that the following
hold; we assume that P is the predicate of �i−1:

 (i) for each 1 ≤ j < k ≤ ��(P) , �i−1[j] = �i−1[k] implies
((f , j), (f , k)) ∈ z,

 (ii) fo r e a ch 1 ≤ j ≤ ��(P) a n d 1 ≤ k ≤ ��(x) ,
�i−1[j] = �i[k] implies ((f , j), (m, k)) ∈ z , and

 (iii) for each 1 ≤ j < k ≤ ��(x) , �i[j] = �i[k] implies
((m, j), (m, k)) ∈ z.

472 KI - Künstliche Intelligenz (2020) 34:465–473

1 3

This completes the construction of p. It is now not difficult
to see that p is an abstract chase path for T . Indeed, condi-
tions 1 and 2a of Definition 3 can be easily verified. Con-
cerning condition 2b, by contradiction, assume there exists
i > 0 and 0 ≤ j < i such that (with � being the labeling func-
tion of p) �(vj) � s�(vi) with s = �(vj), �(vj+1),… , �(vi) . But
this implies that �j � �i , which is a contradiction.

(2) ⇒ (1). By hypothesis, there exists an abstract chase
path p = (vi)i≥0 for T ; � is the labeling function of p. By
definition, for each i > 0 , �(vi) is a successor of �(vi−1) , and
there is no 0 ≤ j < i such that �(vj) � s�(vi) with
s = �(vj), �(vj+1),… , �(vi).

We inductively construct an infinite sequence (�i)i≥0 of
atoms over ���(T) , which contain constants and nulls, as
follows:

– The atom �0 is of the form P(c1,… , cn) , with c1,… , cn
being constants, where P = ��(�(v0)) , and, for each
i, j ∈ [n] , ci = cj iff ((m, i), (m, j)) ∈ ��(�(v0)).

– Assume that we have constructed �0, �1,… , �i ; let R
being the predicate of �i . We define �i+1 as an atom of
the form P(t1,… , tn) , with t1,… , tn being constants and
nulls, where P = ��(�(vi+1)) , and

 (i) f o r e a c h j, k ∈ [n] , tj = tk i f f
((m, j), (m, k)) ∈ ��(�(vi+1)),

 (ii) for each 1 ≤ j ≤ ��(R) and 1 ≤ k ≤ ��(P) , i f
((f , j), (m, k)) ∈ ��(�(vi+1)) , then �i[j] = �i+1[k],

 (iii) for each 1 ≤ j ≤ ��(P) , with � = ���(�(vi+1)) , if
����(�)[j] is an existentially quantified variable z,
then �i+1[j] is the null ⊥z

𝜎,h
 where h is the homomor-

phism from ����(�) to �i , which exists since �(vi+1)
is a successor of �(vi).

This completes the construction of (�i)i≥0 . It is not difficult
to see that (�i)i≥0 is a chase sequence for T . Indeed, condi-
tions 1 and 2a of Definition 2 can be easily verified. Con-
cerning condition 2b, by contradiction, assume that there
exists i > 0 and 0 ≤ j < i such that �j ��i . But this implies
that �(vj) � s�(vi) with s = �(vj), �(vj+1),… , �(vi) , which is
a contradiction, and the claim follows. ◻

5.3 Abstract Chase Paths are MSOL‑definable

Our last task is to show the following:

Lemma 3 Let T ∈ � . There is an MSOL sentence ΦT such
that, for an infinite ΛT -labeled path p, it holds that p ⊧ ΦT
iff p is an abstract chase path for T .

The sentence ΦT has to check whether an infinite ΛT

-labeled path p = (V ,<) , with � being the labeling function,

enjoys the two conditions of Definition 3. Let us assume, for
the moment, that we have available the following formulas:

– �desc(x, y) states that x is a descendant of y.
– �stop(x, y) means that �(x) � s�(y) with s being the

sequence of triples that label the subpath from x to y.

By exploiting the above formulas, we can devise ΦT as the
conjunction �1 ∧ �2a ∧ �2b , where each conjunct checks for
the corresponding condition of Definition 3. Let

i.e., the set of triples of ΛT
 that correspond to facts, and

We also use unary predicates of the form L� , where � ∈ ΛT ,
to state that the label of a node should be � . The sentences
�1 , �2a and �2b are defined as follows:

and

We proceed to give more details about the auxiliary formulas
used in ΦT . The formula �desc(x, y) comes from the general
MSOL toolbox. It simply states that any set of nodes that
contains x and is closed under <, it also contains y.

The formula �s(x, y) can be easily devised providing that
we have available a formula �i,j

=
(x, y) , for each i, j ∈ [��(T)] ,

that states the following: the term in the atom encoded by
the label of x at position i is equal to the term in the atom
encoded by the label of y at position j. This can be expressed
in MSOL as follows: there exists a subset A of the nodes in
the ΛT -labeled path p such that:

1. A is the path with x and y being its ends, i.e., A is finite,
x, y have exactly one neighbor in A, and any other node
in A has exactly two neighbors, and

2. A is a disjoint union of the sets A1,… ,A��(T) such that
x ∈ Ai , y ∈ Aj , and, for all pairs z,w ∈ A with (z, w)
being an edge in the path p, z ∈ Ak and w ∈ A

�
 , it holds

that ((f , k), (m,�)) ∈ ��(�(w)).

Note that above we need to check whether the set of nodes A
is finite. This can be done by exploiting a formula that comes
from the general MSOL toolbox. It simply states that p has

���� =
{
(x, y, z) ∈ ΛT ∣ y = �

}

���� =
{
(�, ��) ∈ ΛT × ΛT ∣ �

� is a successor of �
}
.

𝜓1 = ∀x

((
(¬∃y (y < x)) →

⋁
𝜏∈𝖿𝖺𝖼𝗍

L𝜏(x)

))

𝜓2a = ∀x∀y

(
(x < y) →

⋁
(𝜏,𝜏�)∈𝗌𝗎𝖼𝖼

(L𝜏(x) ∧ L𝜏� (y))

)

�2b =∀x
(
¬∃y

(
�desc(y, x) ∧ �stop(y, x)

))
.

473KI - Künstliche Intelligenz (2020) 34:465–473

1 3

an infinite directed subpath, starting from some intermediate
node p, which is disjoint with A.

We are now ready to conclude the proof of Theorem 2. By
Lemmas 1, 2 and 3, the following are equivalent:

1. T ∉ ℂ𝕋
���
∀∀

.
2. ΦT is satisfiable over infinite ΛT -labeled paths.

Since the latter is decidable, Theorem 2 follows.

6 Conclusions

We presented an alternative proof via standard means for
the decidability of all-instances restricted chase termination
in the case of single-head linear TGDs. Our proof exploits
MSOL, and we believe that is simpler than the ones obtained
from the literature. Despite the simplicity of linear TGDs,
there are still a couple of challenging questions concerning
all-instances restricted chase termination that remain open:

1. What about the exact complexity of the problem?
2. What about arbitrary linear TGDs that can have a con-

junction of atoms in the head?

Acknowledgements We thank the referees for their useful feedback.
Gogacz was supported by Poland’s National Science Centre grant
2018/30/E/ST6/00042. Marcinkowski was supported by the NCN grant
2016/23/B/ST6/01438. Pieris was supported by the EPSRC grant EP/
S003800/1 “EQUID”.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Aho Alfred V, Sagiv Yehoshua, Ullman Jeffrey D (1979) Efficient
optimization of a class of relational expressions. ACM Trans.
Database Syst 4(4):435–454

 2. Baget J-F, Leclère M, Mugnier M-L, Salvat E (2011) On rules
with existential variables: walking the decidability line. Artif
Intell 175(9–10):1620–1654

 3. Baget J-F, Mugnier M-L, Rudolph S, Thomazo M (2011) Walking
the complexity lines for generalized guarded existential rules. In:
IJCAI, 712–717

 4. Bednarczyk B, Ferens R, Ostropolski-Nalewaja P (2020) All-
instances oblivious chase termination is undecidable for single-
head binary tgds. In: IJCAI, 1719–1725

 5. Beeri C, Vardi MY (1984) A proof procedure for data dependen-
cies. J ACM 31(4):718–741

 6. Benedikt M, Konstantinidis G, Mecca G, Motik B, Papotti P, San-
toro D, Tsamoura E (2017) Benchmarking the chase. In: PODS,
pp 37–52

 7. Calautti M, Gottlob G, Pieris A (2015) Chase termination for
guarded existential rules. In: PODS, pp 91–103

 8. Calautti M, Pieris A (2019) Oblivious chase termination: the
sticky case. In: ICDT pp 17:1–17:18

 9. Calì A, Gottlob G, Kifer M (2013) Taming the infinite chase:
query answering under expressive relational constraints. J Artif
Intell Res 48:115–174

 10. Calì A, Gottlob G, Lukasiewicz T (2012) A general Datalog-based
framework for tractable query answering over ontologies. J Web
Sem 14:57–83

 11. Calì Andrea, Gottlob Georg, Pieris Andreas (2012) Towards more
expressive ontology languages: the query answering problem.
Artif Intell 193:87–128

 12. Deutsch A, Nash A, Remmel JB (2008) The chase revisisted. In:
PODS, pp 149–158

 13. Deutsch A, Tannen V (2003) Reformulation of XML queries and
constraints. In: ICDT, pp 225–241

 14. Fagin R, Kolaitis PG, Miller RJ, Popa L (2005) Data exchange:
semantics and query answering. Theor Comput Sci 336(1):89–124

 15. Gogacz T, Marcinkowski J (2014) All-instances termination of
chase is undecidable. In: ICALP, pp 293–304

 16. Gogacz T, Marcinkowski J, Pieris A (2020) All-Instances
restricted chase termination. In: PODS, pp 245–258

 17. Grau BC, Horrocks I, Krötzsch M, Kupke C, Magka D, Motik B,
Wang Z (2013) Acyclicity notions for existential rules and their
application to query answering in ontologies. J Artif Intell Res
47:741–808

 18. Greco S, Spezzano F, Trubitsyna I (2011) Stratification criteria
and rewriting techniques for checking chase termination. PVLDB
4(11):1158–1168

 19. Hernich A, Schweikardt N (2007) Cwa-solutions for data exchange
settings with target dependencies. In: PODS, pp 113–122

 20. Krötzsch M, Marx M, Rudolph S (2009) The power of the termi-
nating chase (invited talk). In: ICDT, pp 3:1–3:17

 21. Leclère M, Mugnier M-L, Thomazo M, Ulliana F (2019) A single
approach to decide chase termination on linear existential rules.
In: ICDT, pp 18:1–18:19

 22. Maier D, Mendelzon AO, Sagiv Y (1979) Testing implications of
data dependencies. ACM Trans Database Syst 4(4):455–469

 23. Marnette B (2009) Generalized schema-mappings: from termina-
tion to tractability. In: PODS, pp 13–22

 24. Meier M, Schmidt M, Lausen G (2009) On chase termination
beyond stratification. PVLDB 2(1):970–981

 25. Nenov Y, Piro R, Motik B, Horrocks I, Wu Z, Banerjee J (2015)
Rdfox: a highly-scalable rdf store. In: ISWC, pp 3–20

 26. Urbani J, Krötzsch M, Jacobs CJH, Dragoste I, Carral D (2018)
Efficient model construction for horn logic with VLog—system
description. In: IJCAR, pp 680–688

http://creativecommons.org/licenses/by/4.0/

	All-Instances Restricted Chase Termination for Linear TGDs
	Abstract
	1 Introduction
	1.1 The Challenge of Non-termination
	1.2 Our Main Objective

	2 Preliminaries
	3 The Restricted Chase Procedure
	3.1 Chase Termination Problem
	3.2 Dealing With Fairness
	3.3 Plan of Attack

	4 Non-termination via Chase Paths
	5 Chase Paths are MSOL-definable
	5.1 Atom Encoding
	5.2 Abstract Chase Paths
	5.3 Abstract Chase Paths are MSOL-definable

	6 Conclusions
	Acknowledgements
	References

