

Edinburgh Research Explorer

Detecting Decidable Classes of Finitely Ground Logic Programs
with Function Symbols

Citation for published version:
Calautti, M, Greco, S & Trubitsyna, I 2017, 'Detecting Decidable Classes of Finitely Ground Logic Programs
with Function Symbols', ACM Transactions on Computational Logic, vol. 18, no. 4, pp. 28:1-28:42.
https://doi.org/10.1145/3143804

Digital Object Identifier (DOI):
10.1145/3143804

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Computational Logic

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Jan. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/160670511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3143804
https://doi.org/10.1145/3143804
https://www.research.ed.ac.uk/portal/en/publications/detecting-decidable-classes-of-finitely-ground-logic-programs-with-function-symbols(cf7026a9-bac8-4ba0-b9a7-6ccfaebbc826).html

39

Detecting decidable classes of finitely ground logic programs with
function symbols1

Marco Calautti2, School of Informatics, University of Edinburgh,
10 Crichton Street, Edinburgh, United Kingdom

Sergio Greco, DIMES, Università della Calabria,
Via P. Bucci, 87036 Rende (CS), Italy

Irina Trubitsyna, DIMES, Università della Calabria,
Via P. Bucci, 87036 Rende (CS), Italy

In this paper, we propose a new technique for checking whether the bottom-up evaluation of logic programs
with function symbols terminates. The technique is based on the definition of mappings from arguments
to strings of function symbols, representing possible values which could be taken by arguments during the
bottom-up evaluation. Starting from mappings, we identify mapping-restricted arguments, a subset of li-
mited arguments, namely arguments which take values from finite domains. Mapping-restricted programs,
consisting of rules whose arguments are all mapping-restricted, are terminating under the bottom-up com-
putation as all its arguments take values from finite domains. We show that mappings can be computed
by transforming the original program into a unary logic program: this allows us to establish decidability
of checking if a program is mapping-restricted. We study the complexity of the presented approach and
compare it with other techniques known in the literature. We also introduce an extension of the proposed
approach which is able to recognize a wider class of logic programs. The presented technique provides a sig-
nificant improvement as it can detect terminating programs not identified by other criteria proposed so far.
Furthermore, it can be combined with other techniques to further enlarge the class of programs recognized
as terminating under the bottom-up evaluation.

CCS Concepts: rComputing methodologies→ Logic programming and answer set programming;

General Terms: Knowledge representation, Logic Programming, Temporal Logics.

Additional Key Words and Phrases: Answer set programming, function symbols, bottom-up evaluation, pro-
gram termination, computational complexity, stable models

ACM Reference Format:
Marco Calautti, Sergio Greco and Irina Trubitsyna, 2016. Detecting decidable classes of finitely ground logic
programs with function symbols. ACM Trans. Embedd. Comput. Syst. 9, 4, Article 39 (March 2010), 44 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Recent developments of answer set solvers have seen significant progress towards pro-
viding support for function symbols. The interest in this area is justified by the fact
that function symbols make languages more expressive and often make modelling eas-
ier and the resulting encodings more readable and concise. The main problem with the
introduction of function symbols is that common inference tasks become undecidable.

1The paper refines and extends results presented at the 15th International Symposium on Principles and
Practice of Declarative Programming [Calautti et al. 2013].
2Part of this work has been contributed by the author during his Ph.D. at DIMES, Università della Calabria.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2010 Copyright held by the owner/author(s). 1539-9087/2010/03-ART39 $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 Calautti et al.

Current techniques analyse how values are propagated among predicate arguments,
to detect whether such arguments are limited, i.e., whether the sets of values that
can be associated with these arguments are finite. However, these methods have li-
mited capacity to analyse the propagation of function symbols during the evaluation
and they often cannot recognize that recursive rules cannot be activated indefinitely.
Consequently, current techniques are not able to identify as terminating even simple
programs whose evaluation always terminates.

The next example shows a case in which the program is terminating but none of the
current criteria is able to identify its termination.

Example 1.1. Consider the following program P where p, q and s denote derived
predicates, whereas b is a base predicate defined by a set of ground facts :

r1 : p(X, X) ← b(X).
r2 : q(f(X), g(X)) ← p(X, X).
r3 : s(X, Y) ← q(f(X), Y).
r4 : p(f(X), f(Y)) ← s(X, Y).

The program is not recognized as terminating by current criteria, but it is easy to see
that recursive rules r2, r3 and r4 cannot be activated indefinitely. Consequently P has
a finite minimum model for every possible database (i.e., set of ground facts defining
b). 2

The problem with the above program is that most of the current criteria analyse
the structure of terms (e.g., depth or size) but do not take into account how different
function symbols occur in such terms. Considering the example above, current criteria
are not able to understand that rule r2 cannot be fired by rule r4, as in each p-atom
derived by means of rule r4 the terms in both arguments cannot be equal.

In this paper we present a new approach for checking termination of the bottom-up
evaluation of logic programs with function symbols. The new technique analyses how
function symbols are nested in complex terms in order to detect larger classes of termi-
nating programs. The analysis above is carried out by constructing strings describing
how function symbols are nested. To analyse strings of function symbols represent-
ing complex terms, the technique here proposed rewrites the input program P into a
unary program Pu where both predicates and functions have a single argument. The
termination of Pu guarantees that also P terminates.

Example 1.1 (cont.) The unary program derived from the program above is as follows:
ρ1.1 : p1(X) ← b1(X).
ρ2.1 : q1(f(X)) ← p1(X), p2(X).
ρ3.1 : s1(X) ← q1(f(X)).
ρ4.1 : p1(f(X)) ← s1(X).

ρ1.2 : p2(X) ← b1(X).
ρ2.2 : q2(g(X)) ← p1(X), p2(X).
ρ3.2 : s2(X) ← q2(X).
ρ4.2 : p2(f(X)) ← s2(X).

where functions and predicates have a unique argument and subscripts on predicates
denote an argument position. The termination of the unary program guarantees that
the source program terminates as well. 2

Other limitations of current approaches include the inability to recognize that par-
ticular constraints among arguments may hold. Knowledge of such constraints can
help in finding that such arguments are limited. Only very recently, techniques were
proposed to perform such kind of reasoning.

Thus the technique proposed also analyses the relationships that may exist among
arguments of the same predicate. This allows the recognition of terminating classi-
cal logic programs (such as the one presented below), not recognized by several other
techniques.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:3

Example 1.2. Consider the following program:

reverse([a, b, c], []).
reverse(L1, [X|L2])← reverse([X|L1], L2).

Although the size of terms in the second argument of predicate reverse increases,
the restriction on the first argument guarantees that the program is terminating and,
therefore, even the second argument is restricted. 2

The peculiarity of the program reported in the previous example is that the corre-
sponding unary program consists of two separate components defining reverse1 and
reverse2, respectively. The specific structure of the two subprograms allow us to estab-
lish that the limitedness of reverse1 implies that also reverse2 is limited and, there-
fore, all arguments of the source program are finite.

It is worth noting that terminating criteria introduced for the (semi-)oblivious chase
(e.g., those proposed in [Marnette 2009; Greco et al. 2015; Calautti et al. 2015]) cannot
be applied. This is due to the fact that in the program above, the same function symbol
occurs in more than one rule and in the body of rules.

Although we concentrate on positive programs, the technique here proposed can be
immediately applied to general programs with negation and head disjunction.

Related work. A significant body of work has been done on termination of logic
programs under top-down evaluation [Schreye and Decorte 1994; Voets and Schreye
2011; Marchiori 1996; Ohlebusch 2001; Codish et al. 2005; Serebrenik and De Schreye
2005; Nishida and Vidal 2010; Schneider-Kamp et al. 2009b; Schneider-Kamp et al.
2009a; Schneider-Kamp et al. 2010; Nguyen et al. 2007; Nguyen et al. 2011; Giesl
et al. 2014; Bruynooghe et al. 2007; Bonatti 2004; Baselice et al. 2009].

In this paper, we consider positive logic programs with function symbols under the
standard minimum model semantics and bottom-up computation. Therefore, as al-
ready discussed in [Calimeri et al. 2008; Greco et al. 2013a], all the above-mentioned
excellent works cannot straightforwardly be applied to our setting. Our results can
be trivially extended to disjunctive programs with negation under different forward
chaining-based semantics (e.g., minimal model semantics, stable model semantics [Gel-
fond and Lifschitz 1988; 1991], well-founded semantics [Gelder et al. 1991], minimal
founded semantics [Furfaro et al. 2004]), preferences-based semantics [Greco et al.
2007; Caroprese et al. 2007]) and semantics for programs with constraint atoms [Son
et al. 2007].

In recent years we have witnessed an increasing interest in the problem of identify-
ing logic programs with function symbols as terminating (i.e., for which a finite set of
finite stable models exists and can be computed).

The class of finitely ground programs, guaranteeing the aforementioned property,
has been proposed in [Calimeri et al. 2008]. Since membership in the class is semi-
decidable, recent research has concentrated on the identification of sufficient condi-
tions, that we call termination criteria, for a program to be finitely ground.

One of the first classes of terminating programs proposed in the literature is the
one of ω-restricted programs, introduced in [Syrjanen 2001]. The main idea here is to
construct a stratification of the predicate symbols, where a predicate p is on an higher
level than a predicate q if p is defined in terms of q.

The aforementioned class has been later extended to the class of λ-restricted pro-
grams, presented in [Gebser et al. 2007]. Here, to each predicate p we assign a natural
number λ(p) called its rank which must be higher than the ranks assigned to predi-
cates occurring in the body of rules defining p.

A more refined approach, which allows the analysis of programs on the argument
level, is the finite domain technique, proposed in [Calimeri et al. 2008]. This crite-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 Calautti et al.

rion relies on the notion of the argument graph, describing the propagation of values
among arguments of a logic program. The analysis of cycles in the graph is then used
to understand whether values may indefinitely propagate among arguments.

Later on, [Lierler and Lifschitz 2009] introduced the class of argument-restricted
programs, which strictly includes all the classes above. This class is based on the as-
signment of a natural number to arguments defining an upper bound on the depth of
terms associated with arguments which can be derived during the bottom-up compu-
tation. One important aspect of this class is that it is (to the best of our knowledge)
one of the most general ones where checking whether a program falls into the class
remains tractable.

The class of safe programs [Greco et al. 2012; Calautti et al. 2015] is an extension of
the class of finite domain programs. Its definition is based on the notions of argument
graph and activation graph, where the latter is used to analyse how rules may trig-
ger each other. The combined use of both the argument and activation graphs allows
the identification of terminating programs not included in the class of finite domain
programs. A further generalization of this class is the following.

Acyclic programs have been introduced by [Greco et al. 2012]. The definition of
acyclic program relies on the notion of propagation graph, an evolution of the argu-
ment graph which also takes into account function symbols occurring in the atoms
and how rules may trigger each other. Identification of terminating programs is then
based on the analysis of cycles and paths in this graph.

A termination criterion more general than the ones presented thus far has been pro-
posed by [Greco et al. 2013a], who introduced the class of bounded programs. For a
better understanding of how terms are propagated, the technique uses two graphs: (i)
the labelled argument graph, a directed graph whose edges are labelled with useful
information on how terms are propagated from the body to the head of rules, and (ii)
the activation graph. A relevant aspect that distinguishes this criterion from the afore-
mentioned ones is the ability to identify groups of arguments having some correlation
during the bottom-up evaluation of the program. This comes at the cost of an increase
in complexity, as checking whether a program is bounded is exponential in the size of
the labelled argument graph and, therefore, in the size of the input program.

The class of rule-bounded programs has been proposed in [Calautti et al. 2016b;
2015a] and relies on the use of linear inequalities to compute the sizes of terms and
atoms. The criterion uses this information and checks if the size of the head atom of
a (recursive) rule is always bounded by the size of a body atom. Since such a check
requires solving a set of integer linear constraints, membership in the class can be
established via a non-deterministic polynomial time procedure.

Finally, an orthogonal technique has been presented in [Greco et al. 2013b]. The
technique can be used in conjunction with current termination criteria, by actually
extending the class of programs recognized as terminating. The technique is based
on the rewriting of the source program P into an “adorned” one Pα. The aim is then
to apply termination criteria to Pα rather than P. The transformation is sound in
that if Pα satisfies a certain termination criterion, then the bottom-up evaluation of P
terminates. However, the size of Pα is, in the worst case, exponential in the size of P.

The classes of argument-restricted, bounded, and rule-bounded programs, being the
more general ones so far proposed, will be discussed in more details in Section 3.

A research area related to the one here investigated is chase termination. That is,
the problem of defining sufficient conditions guaranteeing that the chase fixpoint al-
gorithm terminates, independently of the input database3 [Greco and Spezzano 2010;

3This problem is known to be undecidable in general [Gogacz and Marcinkowski 2014].

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:5

Greco et al. 2011; Greco et al. 2012; Grau et al. 2013; Onet 2013; Greco et al. 2015;
Calautti et al. 2015; Calautti et al. 2015b; 2016a; Calı̀ et al. 2013]. The chase algo-
rithm is an important tool used to compute universal models and consistent answers
to queries over possibly inconsistent databases (i.e., databases that do not satisfy a
given set of integrity constraints). In this context, constraints are defined by specific
logical formulae called tuple generating dependencies (TGDs) and equality generating
dependencies (EGDs) [Fagin et al. 2005].

Two main classes of TGDs have been first shown to guarantee the termination of
the chase: the class of full TGDs [Beeri and Vardi 1984], consisting of TGDs with
no existentially quantified variables, and the class of acyclic inclusion dependencies
[Casanova et al. 1984].

After nearly two decades, the chase received again a lot of attention from the
database community, due to its usefulness in several database applications such as
data exchange, data integration and consistent query answering.

The class of weakly acyclic TGDs and EGDs (WA) has been defined by [Fagin et al.
2005], while at the same time [Deutsch and Tannen 2003] proposed the class of con-
straints with stratified-witness, which is a strict subset ofWA. Weak acyclicity strictly
includes both sets of full TGDs and acyclic sets of inclusion dependencies.

A first proof of the undecidability of the termination of the chase appeared in
[Deutsch et al. 2008]. However, this result only concerns the problem of checking whe-
ther the chase terminates over a set of constraints when an instance is given. The same
paper proposed the class of stratified constraints, for which termination of the chase
is guaranteed. Later on, several other researchers started the study of this important
problem.

[Meier et al. 2009] proposed the criteria of safety, c-stratification, safe restriction, in-
ductive restriction and the T -hierarchy, whereas [Marnette 2009] introduced the class
of super-weakly acyclic TGDs, for which the termination of the (semi-)oblivious chase is
guaranteed.

Greco et al. proposed both sufficient criteria, such as local stratification, and rewrit-
ing algorithms consisting in rewriting the original set of constraints Σ into an “equiv-
alent”, but more informative set Σα. Termination of the chase over Σα guarantees
termination of the chase over Σ [Greco and Spezzano 2010; Greco et al. 2011; 2015].

In [Grau et al. 2013], the model-faithful acyclicity (MFA) and model-summarising
acyclicity (MSA) techniques have been proposed. The idea is to run the semi-oblivious
(aka skolem) chase and then use some checks to identify a form of cyclic computation.
In particular, when a “circular” skolem term is found (i.e., of the form f(. . . f(. . .) . . .)),
the computation of the chase is forced to stop.

The skolem chase termination problem is closely related to the termination of logic
programs, as a set of TGDs can be rewritten into a logic program with function sym-
bols. This is achieved by skolemizing constraints and replacing existentially quantified
variables with complex terms and function symbols. However, chase termination tech-
niques can be used only in very restricted cases of the logic programming setting. This
follows from the fact that in skolemized constraints, function symbols may appear only
in the head of rules and each function symbol may appear in exactly one rule.

Contributions. In this paper we present a new semi-dynamic approach for check-
ing termination of the bottom-up evaluation of logic programs with function symbols.

We introduce the concept of mapping to describe the form of atoms derivable dur-
ing the bottom-up evaluation of a program and use it to identify mapping-restricted
arguments, a subset of limited arguments, namely those arguments which take values
from finite domains.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 Calautti et al.

We show that mapping-restricted arguments are limited and can be computed by
transforming the original program into a unary logic program. Decidability results
are achieved by reductions to satisfiability of Linear Temporal Logic (LTL) [Sistla and
Clarke 1985] and Computation Tree Logic (CTL) [Meier et al. 2008] formulae, for pro-
grams with one and more than one function symbol, respectively.

We study the exact complexity of identifying mapping-restricted arguments by show-
ing that the problem is PSPACE−complete in the presence of just one function symbol
and EXPTIME−complete for general programs with more than one function symbol.

We discuss the relationship between the class of mapping-restricted programs and
other criteria presented in the literature, showing that it generalizes some well-known
techniques (e.g., argument restriction) and is not subsumed by any criterion proposed
so far.

Finally, we also propose an improved version of the mapping-restricted criterion,
which is able to identify a larger class of practical programs for which the bottom-
up evaluation terminates. We show that the overall complexity does not increase in
general.

The extended technique also takes into account the fact that by partitioning the
rewritten (unary) program into subprograms it is possible to determine whether terms
propagated via a particular argument influence the kind of terms propagated in other
arguments of the same predicate symbol.

This paper refines and extends results presented in [Calautti et al. 2013]. In par-
ticular, Section 6.3 provides alternative proofs for the PSPACE and EXPTIME upper
bounds, which are based on reductions to satisfiability of temporal logic formulae. Fur-
thermore, we also show that such bounds are tight. Section 6 presents various ex-
tensions of our technique, which will allow the identification of interesting practical
terminating programs, without compromising the complexity bounds.

Organization. The paper is organized as follows. Section 2 introduces preliminar-
ies on logic programs with function symbols. Section 3 recalls termination criteria de-
fined in the literature. Section 4 presents the new technique and discusses how it
relates to other termination criteria. Complexity results are shown in Section 5. An
extension of the technique, along with a discussion on its complexity is presented in
Section 6. Conclusions and further improvements are discussed in Section 7.

2. LOGIC PROGRAMS
2.1. Syntax
We assume to have (pairwise disjoint) infinite sets of variables, predicate symbols, and
function symbols. Each predicate and function symbol g is associated with an arity,
denoted ar(g), which is a non-negative integer. Function symbols of arity 0 are called
constants. Given a predicate symbol p of arity n, the i-th argument of p is an expression
of the form p[i], for 1 ≤ i ≤ n. A term is either a variable, or an expression of the form
f(t1, . . . , tn), where f is a function symbol of arity n ≥ 0 and t1, . . . , tn are terms. An
atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity n ≥ 0 and
t1, . . . , tn are terms. A (positive) rule r is of the form:

A← B1, . . . , Bm

where m ≥ 0 and A,B1, . . . , Bm are atoms4. The atom A is called the head of r and is
denoted by head(r). The conjunction B1, . . . , Bm is called the body of r and is denoted

4In this paper we consider positive normal rules, that is, rules where the head consists of a single atom and
the body does not contain negated atoms.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:7

by body(r). With a slight abuse of notation, we sometimes use body(r) to also denote
the set of atoms appearing in body(r).

We assume that rules are range restricted, i.e., all variables of a rule appear in some
body atom. A predicate symbol p is defined by a rule r if p appears in the head of r.

A term (resp. atom, rule, set of rules) is ground if no variables occur in it, whereas
it is said to be flat if no function symbols with arity > 0 occur in it. A ground rule with
an empty body is called fact. A rule having the same atom in the head and in the body
is said to be trivial, otherwise, it is said to be nontrivial.

Predicate symbols are partitioned into base and derived predicates. Base predicate
symbols are defined by ground facts only. For (a set of) atoms (resp. rules) S, we denote
by arg(S) = argb(S) ∪ argd(S) the set of arguments occurring in S, where argb(S) (resp.
argd(S)) denotes the set of arguments of the base (resp. derived) predicate symbols
in S.

A program is a finite set of rules. In particular, a finite set of flat facts defining
base predicates is also called database and it is denoted by D, whereas a finite set of
rules defining derived predicates is called logic program (or simply program) and, by
convention, it is denoted by P (possibly with subscript). PD = P ∪D denotes a complete
program containing rules in D and P. Often, whenever there is no ambiguity, we shall
use the term program to also denote complete programs.

Given a program P, a predicate p depends on a predicate q (and write p ≺ q) if there
is a rule r in P such that p appears in the head and q in the body, or there is a predicate
s such that p depends on s and s depends on q. A predicate p is said to be recursive if
it depends on itself, whereas two predicates p and q are said to be mutually recursive
if p ≺ q and q ≺ p. Two atoms are mutually recursive if their predicates are mutually
recursive. Finally, a rule r is said to be recursive if body(r) contains an atom that is
mutually recursive with the head atom of r.

2.2. Semantics
Consider a program P and a database D. The Herbrand universe HPD of PD is the
possibly infinite set of ground terms which can be built using function symbols (and
constants) occurring in PD. The Herbrand base BPD of PD is the set of ground atoms
which can be built using predicate symbols appearing in PD and ground terms of HPD .

A rule (resp. atom) r′ is a ground instance of a rule (resp. atom) r in P if r′ can be
obtained from r by substituting every variable in r with some ground terms in HPD .
We use ground(r) to denote the set of all ground instances of r and ground(P) to denote
the set of all ground instances of the rules in P, i.e., ground(P) = ∪r∈Pground(r).

An interpretation of PD is any subset I of BPD . The truth value of a ground atom A
w.r.t. I, denoted valueI(A), is true if A ∈ I, otherwise it is false. A ground rule r is
satisfied by I, denoted I |= r, if there is a (ground) atom A in body(r) s.t. valueI(A) =
false or the (ground) atom A in the head of r is s.t. valueI(A) = true.

An interpretation of PD is a model of PD if it satisfies every ground rule in
ground(PD). Clearly, every model of PD contains D. In this paper, we are interested
in computing the set of facts which are implied by the rules according to a given se-
mantics (e.g., minimal or stable model semantics).

A model M of PD is minimal if no proper subset of M is a model of PD. Programs
have a unique minimal model, also called minimum model, which will be denoted by
MM(PD).

The minimum model of PD can be computed via the immediate consequence operator
of PD which is a function TPD : 2BPD → 2BPD defined as follows: for every interpreta-
tion I, TPD (I) = {A | A ← B1, . . . , Bn ∈ ground(PD) and {B1, . . . , Bn} ⊆ I}. The i-th
iteration of TPD (i ≥ 1) w.r.t. an interpretation I is defined as follows: T 1

PD (I) = TPD (I)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 Calautti et al.

and T i
PD (I) = TPD (T i−1

PD (I)) for i > 1. The minimum model of PD coincides with T∞PD (∅).
Trivial rules are always satisfied and can be deleted as they do not contribute to com-
pute minimal models.

2.3. Terminating programs
Let P be a program, D a database and let M =MM(PD). An argument p[i] ∈ arg(P) is
said to be limited in M if the set {ti | p(t1, . . . , tn) ∈ MM(PD)} is finite. Furthermore,
p[i] is limited in P if for every database D, p[i] is limited in M . Finally, a program P is
terminating if all arguments in arg(P) are limited in P.

Equivalently, a program P is terminating if for every database D, the bottom-up
evaluation of P starting from the database D terminates. That is, if there is a finite
natural number n such that Tn

PD (∅) = T∞PD (∅).
In this paper, we study new conditions under which a (positive, normal) program P

is terminating.

3. TERMINATION CRITERIA
As discussed in the introduction, the problem of identifying terminating programs is
undecidable in general. Decidable criteria proposed in the literature allow us to de-
termine the termination of programs by analysing their structure with the aim of
finding how the propagation of complex terms among arguments of the program oc-
curs. This analysis is usually carried out via graph-based tools describing the propa-
gation of terms between arguments and/or rules, or via linear constraints simulating
the propagation of values through the rules. Some of such techniques are meant to
detect limited arguments of the program, so that if all arguments are detected, termi-
nation is proved. Other techniques apply an “all-or-nothing” approach, i.e., they can
just conclude whether the program is terminating. In the following, we briefly describe
some of the most general classes of terminating programs proposed in the literature.

Argument-restricted programs. [Lierler and Lifschitz 2009]
The basic idea of the argument-restricted technique is to find a ranking among the

arguments of a given program. Intuitively, the rank of an argument represents an
estimation of the depth of terms that may occur in it. In particular, let d be the rank
assigned to a given argument p[i]. Then, d is an upper bound of the depth of terms
that may occur in p[i] during the program evaluation.

For every atom A of the form p(t1, . . . , tn), A0 denotes the predicate symbol p, and
Ai denotes term ti, for 1 ≤ i ≤ n. The depth dept(X, t) of a variable X in a term t that
contains X is recursively defined as follows:

dept(X,X) = 0,
dept(X, f(t1, . . . , tm)) = 1 + max

i : ti containsX
dept(X, ti).

The depth of a term t is defined as dept(t) = max{dept(X, t) | X occurs in t}; anal-
ogously, the depth of an atom is defined as dept(p(t1, . . . , tn)) = max{dept(X, ti) | i ∈
[1, n] ∧ X occurs in ti}, whereas the depth of a conjunction of atoms is the maximum
depth of the atoms occurring in the conjunction.

Definition 3.1. An argument ranking for a program P is a partial function φ from
arg(P) to non-negative integers such that, for every rule r of P, every atom A occurring
in the head of r, and every variable X occurring in a term Ai, if φ(A0[i]) is defined, then
body(r) contains an atom B such that X occurs in a term Bj , φ(B0[j]) is defined, and

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:9

the following condition is satisfied

φ(A0[i])−φ(B0[j]) ≥ dept(X,Ai)−dept(X,Bj). 2

Example 3.2. Consider the following program P:
r1 : p(f(X))← p(X), b(X).
r2 : t(f(X))← p(X).
r3 : s(X)← t(f(X)).

P has an argument ranking φwhere φ(b[1])= 0, φ(p[1])= 1, φ(t[1])= 2 and φ(s[1])= 1. 2

We useAR(P) to denote the set of restricted arguments of P, i.e.,AR(P) = {p[i] | p[i] ∈
arg(P) ∧ ∃φ s.t. φ(p[i]) is defined}. A program P is said to be argument-restricted iff
AR(P) = arg(P). For example, program P of Example 3.2 is argument-restricted5.
The class of argument-restricted programs is denoted by AR. Checking whether a
program P is argument-restricted is feasible in polynomial time (cubic in the number
of arguments) [Calautti et al. 2015].

Bounded programs. [Greco et al. 2013a]
The class of bounded programs, denoted with BP extends the class of argument-

restricted programs, due to the ability to distinguish different function symbols and to
the analysis of how terms propagated in the arguments of a program influence each
other.

Example 3.3. Consider the following program P counting the number of elements
in a list:

r1 : count(L, N)← input(L, N).
r2 : count(T, N + 1)← count([H|T], N).

where the input list and initial counter are given via databases of the form D =
{input([a, b, c, . . .], 0).}. It is easy to see that the program above is not argument-
restricted, as there is no finite argument ranking for argument count[2]. However, even
though the terms propagated in argument count[2] “grow” at each application of rule
r2, the same application of rule r2 causes the terms propagated in argument count[1] to
“decrease” their nesting level. This implies that only a finite number of terms might be
produced in argument count[2]. The bounded technique is able to detect this behaviour
and allows us to conclude that program P is terminating. 2

The analysis of how values are propagated is carried out via the labeled argument
graph. Edges of this graph are labeled with information about the function symbols
propagated from rules bodies to head atoms. An analysis of the cycles on this graph is
performed, where such labels, denoting the different occurrences of function symbols,
are taken into account. For instance, consider the program {p(f(g(x)) ← p(g(X)).}
which is not in AR. As the depth of p[1] increases, the inspection of the occurrences of
function symbols in the cycles of the labeled argument graph allows to understand that
the rule cannot fire itself. The limitation of this technique is in the fact that such kind
of analysis is performed using the labeled argument graph as the only (static) tool. For
instance, the simple program { p(X, X) ← b(X). p(f(X), X) ← q(X, X). q(X, Y) ← p(X, Y). },
identified as terminating by the technique proposed in this paper, does not belong to
BP.

Checking whether a program P is bounded is exponential in the size of the labelled
argument graph [Greco et al. 2013a]. However, for a particular class of programs,

5It is easy to see that if AR(P) = arg(P), there exists an argument ranking φ which is a total function.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 Calautti et al.

called linear programs in [Greco et al. 2013a], which includes different practical pro-
grams, checking membership in the class is tractable.

Rule-bounded programs. [Calautti et al. 2016b]
The class of rule-bounded programs, denoted with RB, relies on the use of linear

inequalities to measure terms and atoms’ sizes and check if the size of the head of a
(recursive) rule is always bounded by the size of a body atom.

Specifically, the size of a term t, denoted by size(t), is defined as follows: if t is a
variable X, its size is represented by an arithmetic variable x. Otherwise, t is a term
of the form f(t1, . . . , tn) and its size is size(t) = n +

∑n
i=1 size(ti). The size of an atom

A = p(t1, . . . , tn), denoted size(A), is the n-vector (size(t1), . . . , size(tn)).
An arithmetic variable x intuitively represents the possible sizes that the logical

variable X can have during the bottom-up evaluation. The size of a term of the
form f(t1, . . . , tn) is defined by summing up the size of its terms ti’s plus the arity
n of f . For instance, consider rule r2 of program P of Example 3.3. Let A and B be,
respectively, the atom in the head and the atom in the body. Then, size(A) = (t, 1 + n)
and size(B) = (2 + h+ t, n).

Example 3.4. The following linear constraint is used to check if the size of the head
of r2 in Example 3.3 is always bounded by the size of the only body atom (rule r1 is
ignored in the analysis as it is harmless):

(α1, α2) · (2 + h+ t, n) ≥ (α1, α2) · (t, 1 + n)

Here (α1, α2), (2 + h+ t, n), and (t, 1 + n) are vectors and · denotes the classical scalar
product operator. In order for the program to be rule-bounded, positive integers α1 and
α2 must exist such that the inequality is satisfied for all possible non-negative integer
values assigned to h, t, and n. A possible solution is α1 = 1 and α2 = 1. Thus the
program is rule-bounded. 2

Membership in the class of rule-bounded programs can be established via a non-
deterministic polynomial time procedure. Rule-bounded programs are incomparable
with argument-restricted and bounded programs. An extension of the class of rule-
bounded programs, which is still incomparable with argument-restricted and bounded
programs, has been proposed in [Calautti et al. 2015a].

4. MAPPING-RESTRICTED PROGRAMS
In this section we assume, w.l.o.g., that rules are constant-free and the maximum
nesting level of terms is 1. There is no real restriction in such an assumption as every
program P could be rewritten into an equivalent program satisfying such conditions.
For instance, a rule of the form p(f(h(X))) ← q(X) could be rewritten into the rules
p(f(X)) ← p′(X), p′(h(X)) ← q(X). A detailed description of how rules are rewritten
is presented in Appendix C. We also point out that all the following results extend to
arbitrary programs with disjunction in the head and negation in the body.

We start by introducing the notions of mapping, m-set and derived m-set, used to
describe the form of atoms derivable during the bottom-up evaluation of a program
(Subsection 4.1). Next, we define a set of mappings U∗P (called minimum supported m-
set) providing a way to predict the form of atoms occurring in every model, regardless of
the database (Subsection 4.2). The new class of terminating programs, called mapping-
restricted, is presented. We show that the minimum supported m-set of a program P
can also be constructed by transforming P into a unary program Pu so that U∗P can be

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:11

obtained from the minimum model of Pu (Subsection 4.3). Finally, in Subsection 4.4
we compare our criterion with the ones presented in Section 3.

4.1. M-set
Definition 4.1 (Mapping and m-set). Let P be a program. A mapping is a pair p[i]/s

such that p[i] ∈ arg(P) and s ∈ F ∗P , where: (i) FP denotes the alphabet consisting of
all function symbols occurring in P, and (ii) F ∗P denotes the Kleene closure on FP . An
m-set of P is a set of mappings of P. 2

Intuitively, a mapping p[i]/s is used to describe the fact that during the bottom-up
evaluation of a program, considering all possible databases, argument p[i] could
take values whose structure, in terms of nesting of function symbols, is described
by the string s. For instance, let p(f(g(c1)), c2) be a ground atom derivable through
the bottom-up evaluation of the input program. The mappings for its arguments are
p[1]/fg and p[2]/ε, where the symbol ε denotes the empty string.

The next step is to characterize the models of a program P and database D by means
of m-sets.

Definition 4.2 (Derived m-set). Let P be a program, D a database and M a model
of PD. The m-set derived from M is the m-set of P defined as:

UM = {p[i]/s | p(t1, . . . , tn) ∈M ∧ s ∈ str(ti)}

where str(t) is the set of strings induced by t defined as:

str(t) =

{
{ε} if t is a simple term,

{f · s | t = f(u1, . . . , uk) ∧ s ∈ str(uj) ∧ 1 ≤ j ≤ k} otherwise 2

Whenever str(t) = {s} is a singleton, we also denote the element s by str(t).

Example 4.3. Consider the database D = {b(a).} and the following program P:

r1 : p(X, f(X)) ← b(X).
r2 : p(f(X), X) ← b(X).
r3 : q(f(X), g(X)) ← p(X, X).
r4 : q(f(X), f(X)) ← q(X, X).

The minimum model M of PD and the corresponding derived m-set are:

M = { b(a), p(a, f(a)), p(f(a), a) },
UM = { b[1]/ε, p[1]/ε, p[2]/f, p[1]/f, p[2]/ε }. 2

4.2. Minimum supported m-set
In the following, we show how to construct a particular m-set, called supported, that
characterizes the whole set of minimum models of a program P, regardless of the
database. Intuitively, a supported m-set U is such that whenever an atom p(t1, . . . , tn)
is derived during the computation of the minimum model of a program P, then for each
ti and every s ∈ str(ti), the mapping p[i]/s belongs to U . That is, for each ti there must
exist strings that agree with ti.

Definition 4.4 (Supported m-set). Let P be a program and let U be an m-set of P.
We say that U is supported if:

(1) b[i]/ε ∈ U for every argument b[i] ∈ argb(P), and

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 Calautti et al.

(2) for every rule r : p(t1, . . . , tm) ←
∧n
k=1 p

k(vk1 , . . . , v
k
mk

) in P and variable X in
head(r), if there exists a string s such that for every body term vkj containing X,
either (vkj = X ∧ pk[j]/s ∈ U) or (vkj = g(. . . , X, . . .) ∧ pk[j]/gs ∈ U), then:
— if ti = f(. . . X . . .), then p[i]/fs ∈ U , whereas
— if ti = X, then p[i]/s ∈ U . 2

As shown by the next example, a program might have multiple supported m-sets.

Example 4.5. Considering the program P of Example 4.3, the following m-sets are
supported m-sets of P:

U1 = {b[1]/ε, p[1]/ε, p[2]/f, p[1]/f, p[2]/ε, q[1]/f, q[2]/g, q[1]/ff, q[2]/gf}
U2 = U1 ∪ { p[1]/g, p[2]/g, q[1]/fg, q[2]/gg} 2

Although a program P might have multiple supported m-sets, it is easy to see that
there is a unique supported m-set which is minimal (w.r.t. set inclusion). We refer to
this m-set as the unique minimal (or simply minimum) supported m-set of P, and
denote it by U∗P . In the case of Example 4.5, the minimum supported m-set coincides
with U1.

Definition 4.4 implicitly introduces a monotonic operator allowing us to compute the
minimum supported m-set of a program P. The operator, denoted by ΩP , is defined as
follows:

— Ω0
P = { b[i]/ε | b[i] ∈ argb(P) };

— Ωn+1
P = ΩnP ∪ { p[i]/s | ∃r : p(t1, . . . , tm) ←

∧
k p

k(vk1 , . . . , v
k
mk

) ∈ P ∧ ∃X in ti ∧ ∃s′ ∈
F ∗P s.t. ∀vkj , vhl containing X, s=ω(X, ti, v

k
j , s
′,ΩnP)=ω(X, ti, v

h
l , s
′,ΩnP) ∧ s 6=⊥},

where ω is the function returning either a string or the symbol ⊥ defined as follows.

Function ω(X, ti, v
k
j , s
′,ΩnP):

begin
if (vkj = X ∧ pk[j]/s′ ∈ ΩnP) ∨ (vkj = g(. . . X . . .) ∧ pk[j]/gs′ ∈ ΩnP) then

if ti = f(. . . X . . .) then return fs′;
if ti = X then return s′;

else return ⊥;
end.

Clearly the operator ΩP is monotone, because ΩnP ⊆ Ωn+1
P , and Ω∞P = U∗P . As we

will show in the next example, the minimum supported m-set of a program is closely
related to the model of the program itself.

Example 4.6. Consider the program P and database D of Example 4.3. The m-set
derived from M =MM(PD) and the minimum supported m-set of P are:

UM = {b[1]/ε, p[1]/ε, p[2]/f, p[1]/f, p[2]/ε}.
U∗P = {b[1]/ε, p[1]/ε, p[2]/f, p[1]/f, p[2]/ε, q[1]/f, q[2]/g, q[1]/ff, q[2]/gf} 2

The previous example shows that if M is the minimum model of our program, the pro-
gram’s minimum supported m-set contains the m-set derived from M . That is, U∗P acts
as an over-approximation for UM . We will show in the following that given a program
P, the relation above holds regardless of the chosen database.

LEMMA 4.7. Given a program P, then UM ⊆ U∗P for every database D, where M =
MM(PD).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:13

PROOF. To prove the lemma, we first show that UM ⊆ UM ′ and then show that
UM ′ ⊆ U∗P , where M ′ =MM(P ∪Dε) and Dε = {b(ε, . . . , ε) | b is a base predicate of P}.

(UM ⊆ UM ′). Let p[i]/s be a mapping in UM . If p[i] ∈ argb(P), then s = ε, by definition
of UM . From the definition of Dε it immediately follows that p[i]/ε ∈ UM ′ as well. If
p[i] ∈ argd(P), then there must be a rule r : p(t1, . . . , ti, . . . , tn) ← body(r) in P and a
substitution θ for all variables occurring in r, such that all atoms in body(r)θ appear
in M (this follows from the definition of the minimum model of P). Let θ′ be the
substitution obtained from θ by replacing all constants occurring in θ with ε. Since P is
a positive, normal program, if the joins in body(r)θ are satisfied, the joins in body(r)θ′

are satisfied as well. Thus, the atoms in body(r)θ′ and head(r)θ′ must occur in M ′.
Then, by construction of θ′, we have p[i]/s ∈ UM ′ .

(UM ′ ⊆ U∗P). We show this part of the lemma by induction on the steps of the immediate
consequence operator TP∪Dε needed to construct M ′. In particular, let Mn = Tn

P∪Dε(∅)
for n > 0. We show that for each n > 0, if p[i]/s ∈ UMn , then p[i]/s ∈ U∗P .

Base (n = 1): All mappings b[i]/s ∈ UM1
are such that b[i] ∈ argb(P). So, by definition

of UM1
and U∗P , the claim follows.

Inductive case (n > 1): Let p[i]/s ∈ UMn\Mn−1
. By definition of TP∪Dε , there must

be a rule r : p(t1, . . . , ti, . . . , tn) ←
∧
k q

k(vk1 , . . . , v
k
mk

) in P and a substitution θ for all
variables occurring in r, such that all atoms in body(r)θ appear inMn−1 and s ∈ str(tiθ).
Let r′ = rθ = p(t1θ, . . . , tiθ, . . . , tnθ)←

∧
k q

k(vk1θ, . . . , v
k
mk
θ) be the ground rule obtained

by applying θ to r. Recall that s ∈ str(tiθ). Furthermore, by inductive hypothesis, since
each atom in body(r)θ belongs to Mn−1, we have that for all k, j and every s′ ∈ str(vkj θ),
qk[j]/s′ ∈ U∗P . Assume that s is the string in str(tiθ) obtained by the concatenation
of all function symbols in tiθ up to a position in which some variable X occurs in ti.
Furthermore, note that θ replaces each variable with the same ground term. Let us
now consider the set S of all the mappings qk[j]/s′ ∈ UMn−1

such that s′ ∈ str(vkj θ) is
obtained by the concatenation of the function symbols in vkj θ, up to a position where
X appears. By inductive hypothesis, S ⊆ U∗P . Furthermore, the mappings in S satisfy
Item 2 of Definition 4.4, w.r.t. to r and the variable X. Thus, since s is obtained by
concatenating function symbols in tiθ up to some occurrence of X, from the definition
of U∗P , we conclude that p[i]/s must belong to U∗P . 2

From the lemma above, it follows that each program whose minimum supported m-
set is finite has a finite minimum model for every database D. With this lemma in
hand, we are ready to define our class of terminating programs.

Definition 4.8 (Mapping-restricted arguments). An argument p[i] occurring in a
program P is said to be mapping-restricted (or simply m-restricted) iff the set
{p[i]/s | p[i]/s ∈ U∗P} is finite. The set of all m-restricted arguments of P is denoted
by MR(P). 2

Definition 4.9 (Mapping-restricted programs). A program P is said to be m-
restricted iff MR(P) = arg(P), i.e., U∗P is finite. The set of all m-restricted programs
is denoted byMR. 2

It is clear, from the discussion above, that every program belonging to MR has a
finite minimum model, and thus is terminating. Furthermore, we can show that every
m-restricted argument is also limited.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 Calautti et al.

THEOREM 4.10. Given a program P and an argument p[i] ∈ arg(P), then

(1) p[i] ∈MR(P) implies that p[i] is limited in P;
(2) P ∈MR implies that P is terminating.

PROOF. Let U∗P be the minimum supported m-set of P.
(1) If p[i] ∈ MR(P), then the set Sp[i] = {p[i]/s | p[i]/s ∈ U∗P} is finite. From
Lemma 4.7, for every database D, if M = MM(PD), then UM ⊆ U∗P . Then, the set
S′p[i] = {p[i]/s | p[i]/s ∈ UM} is such that S′p[i] ⊆ Sp[i]. Yet this implies that the set
{ti | p(t1, . . . , tn) ∈M} is finite as well. Then, p[i] is limited in P.
(2) This straightforwardly follows from Item (1), since when P ∈MR,MR(P) = arg(P)
and every argument of P is limited. 2

4.3. Unary transformation
In this section, we discuss an alternative way of defining the minimum supported
m-set of a program P. In particular, we show how to encode the operator ΩP as the
immediate consequence operator TPu of a unary program Pu derived from P. Such a
correspondence will help to better understand the notion of (minimum) supported m-
set and, more importantly, it allows to reduce the termination problem of P to the the
termination problem of Pu. The latter problem is decidable and provides a convenient
tool for discussing the complexity results presented in Section 5.

Definition 4.11 (Unary transformation). Let P be a program. We define Pu as the
unary program consisting of the rules derived from P as follows:

(1) for every argument b[i] ∈ argb(P), Pu contains a fact bi(ε);
(2) for every rule r = p(t1, . . . , tn) ← body(r) in P, for every variable X occurring in

p(t1, . . . , tn), and for every term ti where X occurs, we add the following rule in Pu
if it is nontrivial:

pi(t
X
i)←

∧
q(u1,...,uk) in body(r)
∧ X occurs in uj

qj(u
X
j)

where tX is defined as follows:

tX =

{
X if t = X

f(X) if t = f(. . . , X, . . .). 2

Example 4.12. Consider the program P below (on the left side), where b is a base
predicate, and the corresponding unary program Pu (on the right side), where rules ρi
and ρ′i are derived from ri for i ∈ {1, 2, 3}.

P =

{
r1 : p(X, X) ← b(X).
r2 : q(f(X), f(X)) ← p(X, X).
r3 : p(f(X), X) ← q(X, X).

Pu =

ρ0 : b1(ε).
ρ1 : p1(X) ← b1(X).
ρ′1 : p2(X) ← b1(X).
ρ2 : q1(f(X)) ← p1(X), p2(X).
ρ′2 : q2(f(X)) ← p1(X), p2(X).
ρ3 : p1(f(X)) ← q1(X), q2(X).
ρ′3 : p2(X) ← q1(X), q2(X).

The minimum model M of Pu is:

M = {b1(ε), p1(ε), p2(ε), q1(f(ε)), q2(f(ε)), p1(f(f(ε))), p2(f(ε))}

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:15

Furthermore, the minimum supported m-set of P and the m-set derived from M are:

U∗P = {b[1]/ε, p[1]/ε, p[2]/ε, q[1]/f, q[2]/f, p[1]/ff, p[2]/f}
UM = {b1[1]/ε, p1[1]/ε, p2[1]/ε, q1[1]/f, q2[1]/f, p1[1]/ff, p2[1]/f} 2

The example above shows that there is a direct correspondence between the
minimum supported m-set of P and the m-set derived from the minimum model of
the unary program Pu. In turn, this shows that there is a one-to-one correspondence
between U∗P and the minimum model M of Pu. So, it is clear that if it is possible to
compute M , then also U∗P can be constructed.

In the following, we show that such a useful correspondence holds for every program.

PROPOSITION 4.13. Let P be a program and let M = MM(Pu) be the minimum
model of the unary program Pu. Then, there exists a bijection h : arg(P)→ arg(Pu) such
that p[i]/s ∈ U∗P iff h(p[i])/s ∈ UM .

PROOF. First of all, please note that p[i] ∈ arg(P) iff pi[1] ∈ arg(Pu). Consider now
the bijection h such that h(p[i]) = pi[1], for every p[i] ∈ arg(P). We start by showing the
“if” part of the proposition, by induction on the steps of the immediate consequence
operator TPu used to construct M (recall that M = T∞Pu(∅)).

Base (n = 1):
Let M ′ = T 1

Pu(∅) = {bi(ε) | b[i] ∈ argb(P)}. By construction of UM ′ , we have that
bi[1]/ε ∈ UM ′ , for every b[i] ∈ argb(P). Recalling that bi[1] = h(b[i]) and that b[i]/ε ∈ U∗P ,
for each b[i] ∈ argb(P), the claim follows.

Inductive case (n > 1):
Let Mn−1 = Tn−1

Pu (∅) and assume by inductive hypothesis that for each
p[i] ∈ arg(P) and string s, if h(p[i])/s ∈ UMn−1 , then p[i]/s ∈ U∗P . Furthermore,
let M ′ = Tn

Pu(∅) = TPu(Mn−1). Now, let p[i] ∈ arg(P) be such that h(p[i])/s ∈ UM ′ ,
with s = f1 · · · fm. If h(p[i])/s ∈ UMn−1 then the claim follows by inductive hypothesis.
If h(p[i])/s ∈ (UM ′ \ UMn−1), then, there must exists a ground atom A of the form
pi(f1(f2(. . . fm(ε)))) in M ′ \Mn−1. Since M ′ = TPu(Mn−1), from the definition of TPu ,
there is a ground instance of a rule in Pu of the form A ← B1, . . . , Bk, such that
k > 0 and such that the atoms {B1, . . . , Bk} ⊆ Mn−1. From the definition of UMn−1 ,
for each atom qj(t) ∈ {B1, . . . , Bk}, the mapping h(q[j])/str(t) ∈ UMn−1 , where str(t)
is the (only) string induced by the term t. Furthermore, by inductive hypothesis, if
h(q[j])/str(t) ∈ UMn−1 , then q[j]/str(t) ∈ U∗P . But, from the definition of supported
m-set, there must also exist a mapping of the form p[i]/s in U∗P .

We show the “only if” part of the proposition via an induction on the steps of the
operator ΩP needed to construct the minimum supported m-set U∗P of P. In particular,
we show that at each step n, if p[i]/s ∈ ΩnP , then h(p[i])/s ∈ UM .

For the step n = 0, the claim follows by definition of ΩP and UM . Now, let p[i]/s ∈
ΩnP \ Ωn−1

P , with n > 0. By definition of ΩP , there must be a rule in P of the form
r = p(t1, . . . , tm) ←

∧
k p

k(vk1 , . . . , v
k
mk

), a variable X in ti and a string s′ such that
∀vkj , vhl containing X, s = ω(X, ti, v

k
j , s
′,Ωn−1
P)=ω(X, ti, v

h
l , s
′,Ωn−1
P) and s 6=⊥. Looking

at function ω, the condition:

(vkj = X ∧ pk[j]/s′ ∈ Ωn−1
P) ∨ (vkj = g(. . . X . . .) ∧ pk[j]/gs′ ∈ Ωn−1

P)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 Calautti et al.

can be rewritten by inductive hypothesis to the following:

(vkj = X ∧ pkj [1]/s′ ∈ UM) ∨ (vkj = g(. . . X . . .) ∧ pkj [1]/gs′ ∈ UM)

But this implies, by definition of Pu and by definition of the immediate consequence
operator TPu that the string s returned by the function ω is indeed such that pi[1]/s ∈
UM . That is, h(p[i])/s ∈ UM . 2

Therefore, the minimum supported m-set of a program P can be obtained by com-
puting the minimum model of Pu, that is U∗P = {p[i]/s | pi[1]/s ∈ UMM(Pu)} =

{p[i]/str(t) | pi(t) ∈MM(Pu)}.

4.4. Comparison with other approaches
In this section we study the relationship between the class of mapping-restricted pro-
grams and other classes of terminating programs proposed in the literature. We will
focus on the classes of argument-restricted, bounded and rule-bounded programs intro-
duced in Section 3. This study allows us to conclude thatMR strictly includes several
decidable classes defined in the literature (which are included in AR). Furthermore, to
the best of our knowledge, there is no decidable class already defined in the literature
which includesMR.

We start by showing that the class of argument-restricted programs is strictly con-
tained in the class of mapping-restricted programs. Argument-restricted programs are
identified by constructing a ranking over the arguments of a given program P. Such
rankings represent the maximum depth that terms may have during the bottom-up
evaluation of P, for any given database. The reason why such a class is contained in
MR is that mapping-restricted programs are identified by finding the structure that
terms may have inside the arguments. This is achieved by constructing, for each argu-
ment, strings of function symbols, which can represent both the depth of the term (via
the string length) and the function symbols composing the term itself.

Example 4.14. Consider the following program P:

r1 : p(X, X)← b(X).
r2 : p(f(X), g(X))← p(X, X).

where b is a base predicate symbol. It is easy to show that there is no argument rank-
ing for the arguments p[1] and p[2]. This is because, according to Definition 3.1, the
presence of rule r2 in the program will enforce the constraint φ(p[i]) > φ(p[i]), for
i = 1, 2. On the other hand, we can construct the minimum supported m-set of P using
the operator ΩP . First construct Ω0

P = {b[1]/ε}. Then, by looking at rule r1, construct
Ω1
P = Ω0

P ∪ {p[1]/ε, p[2]/ε}. Then, using the previous two mappings and rule r2, we ob-
tain Ω2

P = Ω1
P ∪{p[1]/f, p[2]/g}. Since there are no pairs of mappings p[1]/s1 and p[2]/s2

in Ω2
P \ Ω1

P such that s1 = s2, we obtain the finite minimum supported m-set:

U∗P = Ω2
P = Ω∞P = {b[1]/ε, p[1]/ε, p[2]/ε, p[1]/f, p[2]/g}

Since U∗P is finite, we conclude that P ∈MR. Observe also that the construction of U∗P
terminates because the mapping-restricted technique is able to distinguish between
the symbols f and g. 2

In the following we formally prove that argument-restricted programs are strictly
contained in the class of mapping-restricted programs.

THEOREM 4.15. AR (MR.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:17

PROOF. Let P be an argument-restricted program. We denote by P
f

the logic pro-
gram obtained from P by replacing every function symbol occurring in P with the
symbol f , admitting that a function symbol does not have fixed arity. Note that P is
argument restricted iff P

f
is argument restricted. Moreover, if U∗P

f
is finite, then U∗P

is finite too. Let φ be the argument ranking (which is a total function) of both P and
P
f
. We denote by sk the string of length k of the form sk = fsk−1, where s0 = ε. Let
UP

f
= {p[i]/sk | p[i] ∈ arg(P) ∧ 0 ≤ k ≤ φ(p[i])}. Note that such an m-set is a finite

supported m-set for P
f
.

In fact, UP
f

trivially satisfies Item 1 of Definition 4.4. Regarding Item 2, recall that
P
f

is argument-restricted, thus φ(A0[i]) ≥ φ(B0[j]) + dept(X,Ai) − dept(X,Bj) holds,
where X, Ai and Bj are terms occuring in some rule r, according to Definition 3.1.
Furthermore, P

f
has only one function symbol. So, from Item 2, if X has a mapping

to a string sk of length k in body(r), the mapping A0[i]/sh must belong to UP
f
, with

h = k + dept(X,Ai) − dept(X,Bj). By construction of UP
f
, k ≤ φ(B0[j]) which implies

φ(A0[i]) ≥ k+dept(X,Ai)−dept(X,Bj) (i.e., φ(A0[i]) ≥ h). Since A0[i]/sl ∈ UP
f
, for every

l ≤ φ(A0[i]) and since φ(A0[i]) ≥ h, we conclude that A0[i]/sh ∈ UP
f
.

It is worth noting that UP
f

is not necessarily minimum, since φ is not guaranteed to
map arguments to the smallest possible integers. However, the minimum supported
m-set U∗P

f
is a subset of every supported m-set, then U∗P

f
⊆ UP

f
. Thus, U∗P

f
is finite,

implying that U∗P is finite and P ∈MR.
In order to prove the strict inclusion, observe that the program from Example 4.14

is inMR but not in AR. 2

Interestingly, AR is strictly contained in MR even if we consider programs with
only one function symbol.

THEOREM 4.16. AR (MR even for programs admitting only one function symbol.

PROOF. The weak inclusion derives from Theorem 4.15. To prove strict contain-
ment, it is sufficient to show that there is a program P containing only one function
symbol such that P ∈MR and P 6∈ AR. Such a program is as follows:

r1 : p(X, f(X)) ← b(X).
r2 : q(f(X), f(X)) ← p(X, f(X)).
r3 : s(X, f(Y)) ← q(X, Y).
r4 : p(X, f(Y)) ← s(X, Y).

The program is not in AR as there is no argument ranking satisfying the conditions of
Definition 3.1. Indeed, assume towards a contradiction that P ∈ AR. Then, by defini-
tion of argument ranking, from rules r2, r3 and r4, the following inequalities must be
satisfied:

(r2) φ(q[2]) ≥ φ(p[2])
(r3) φ(s[2]) > φ(q[2])
(r4) φ(p[2]) > φ(s[2])

However, combining the inequalities above, we obtain that φ(p[2]) > φ(s[2]) >
φ(q[2]) ≥ φ(p[2]). That is, φ(p[2]) > φ(p[2]).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 Calautti et al.

On the other hand, the program is in MR, as the minimum model of the unary
program Pu below is finite:

ρ0 : b1(ε).
ρ1.1 : p1(X) ← b1(X).
ρ1.2 : p2(f(X)) ← b1(X).
ρ2.1 : q1(X) ← p1(X), p2(f(X)).
ρ2.2 : q2(f(X)) ← p1(X), p2(f(X)).
ρ3.1 : s1(X) ← q1(X).
ρ3.2 : s2(f(Y)) ← q2(Y).
ρ4.1 : p1(X) ← s1(X).
ρ4.2 : p2(f(Y)) ← s2(Y).

2

It is worth noting that the proof above guarantees that the containment remains
strict even if the only function symbol is unary.

Observe that both argument and mapping-restricted techniques are also able to de-
tect, for a given program P, a subset of the limited arguments of P. As we will show
later on in this paper, even if a program is not detected as terminating, the capacity to
identify a large subset of its limited arguments is still an important task. This is due to
the fact that one can devise techniques (see Section 6.2) able to eventually identify the
whole set of arguments as limited, when an initial set of limited arguments is given.

The following corollary states that the set of limited arguments identified by our ap-
proach is always better than the one recognized by the argument-restricted technique.

COROLLARY 4.17. For any program P, AR(P) ⊆MR(P).

PROOF. Straightforward from the proof of Theorem 4.15. 2

We conclude this section by showing that the class of mapping-restricted programs
is incomparable to the classes of bounded and rule-bounded programs.

THEOREM 4.18. MR is incomparable with BP and RB.

PROOF. To prove the theorem it is sufficient to show that there is a bounded (resp.
rule-bounded) program not belonging toMR, and viceversa. Indeed, the program from
Example 1.1 is mapping-restricted, but neither bounded nor rule-bounded, whereas
the following program:

p(f(X), Y)← b(X, Y).
p(X, f(Y))← p(f(X), Y).

is both bounded and rule-bounded but not mapping-restricted. 2

Regarding the extension of the class of rule-bounded programs, proposed in [Calautti
et al. 2015a], this class strictly extends RB and is incomparable with AR. Conse-
quently, it is incomparable withMR too.

It is worth noting that although we have restricted our attention to normal, positive
programs the technique can be applied to an arbitrary program P with disjunction in
the head and negation in the body by considering a positive program st(P) derived
from P as follows. Every rule A1 ∨ · · · ∨ Am ← body in P is replaced with m positive
rules of the form Ai ← body+ (1 ≤ i ≤ m) where body+ is obtained from body by deleting
all negative literals. For instance, considering general programs under stable model
semantics, as already stated in [Greco et al. 2012], the minimal model of st(P) contains
every stable model of P. Thus, if one can show that st(P) is terminating, finiteness and
computability of the stable models of P is guaranteed as well.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:19

5. DECIDABILITY AND COMPLEXITY RESULTS
In this section, we show that the problem of checking whether (an argument of) a pro-
gram P is mapping-restricted is decidable. In particular, we make use of the relation
between our problem and the problem of checking the finiteness of the minimum model
of Pu. Thus, we focus our attention on the unary program Pu. We prove that checking
if MM(Pu) is finite is PSPACE−complete (resp. EXPTIME−complete) when the orig-
inal program contains at most one (resp. more than one) function symbol. The lower
bounds are shown by standard reductions from the halting problem of a PSPACE (resp.
APSPACE) Turing machine, whereas the upper bounds are obtained by reductions to
satisfiability of Linear Temporal Logic (resp. Computation Tree Logic) formulae. We
follow the assumption of Section 4, stating that rules are constant-free and the maxi-
mum nesting level of terms in P is 1.

With Proposition 4.13 in place, it is clear that the problem of deciding whether a
program P (resp. an argument p[i]) is mapping-restricted is tantamount to the problem
of deciding whetherMM(Pu) is finite (resp. pi[1] is limited inMM(Pu)).

In order to properly discuss the complexity of the aforementioned problems, we start
by defining the notion of size of a program and then show the relationship between
the size of a given program P and its corresponding unary program Pu.

The size of a program P (resp. database D), denoted by size(P) (resp. size(D)), is
defined as the total number of occurrences in P (resp. D) of predicate symbols, function
symbols, variables and constants. The size of a program along with its database PD is
size(PD) = size(P) + size(D).

LEMMA 5.1. Given a program P, the unary program Pu is computable in polyno-
mial time w.r.t. size(P).

PROOF. We start by showing that the number of facts and rules in Pu is polynomial
w.r.t. size(P). Then we will show that constructing each fact (resp. rule) of Pu is feasible
in polynomial time. These two results will immediately give the desired complexity
result. In the following we denote by Du the set of facts occurring in Pu and by T u the
set of remaining rules, i.e., Pu \Du. We also denote by nr the number of rules in P, bp
the maximum number of predicates in the body of rules of P, ap the maximum arity of
predicates in P and af the maximum arity of function symbols in P.

By definition of Pu, the number of facts in Du is equal to the number of base argu-
ments of P, and the maximum arity of predicates in Du is one. Regarding T u, the rules
in it are at most nr · ap · af . Furthermore, the maximum number of predicates in the
body of rules in T u is bp · ap and the maximum arity of predicates and function sym-
bols of T u is one. Since the nesting level for function symbols is assumed to be at most
one, we have that the total number of symbols (predicates, functions and variables)
occurring in T u is bounded by O((nr · ap · af) · (bp · ap)). Regarding the construction of
Pu, computing one fact of Du is a constant time operation since facts of Du are all of
the form bi(ε), where bi corresponds to a base argument b[i] of P. Given a rule r in P,
the construction of one rule of T u starting from r just requires a linear scanning of r
from left to right by picking a variable occurrence in the head and then extracting from
body(r) the needed atoms containing the same variable. 2

It is clear from Proposition 4.13 and Lemma 5.1 above that the problem of checking
whether a program (resp. an argument p[i] of) P belongs to MR (resp. MR(P)) and
the problem of checking whetherMM(Pu) is finite (resp. pi[1] is limited inMM(Pu))
are not only equivalent but also polynomial time equivalent. This means that com-
plexity results for the latter problem can immediately be applied to the former (and

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 Calautti et al.

vice versa), when such results involve complexity classes closed under polynomial time
many-one reductions.

In the following, we show the exact complexity of the aforementioned problems. In
particular, we show how the complexity changes on the basis of whether P contains at
most one or more than one function symbol.

THEOREM 5.2. Let P be a program with at most one function symbol. Checking
whether the minimum model of Pu is finite is in PSPACE.

PROOF. Recall that Pu is a positive normal logic program having only unary predi-
cate symbols, and rules contain exactly one variable, say X. In the following we denote
by Du the set of facts occurring in Pu and by T u the set of remaining rules, i.e., Pu\Du.
By our assumption, at most one function symbol may occur in T u. To show the desired
upper-bound, we reduce the problem of checking whether the minimum model of a pro-
gram of the form of Pu is finite to the satisfiability problem of Linear Temporal Logic
(LTL) formulae. See the appendix for more details on LTL.

Let M = MM(Pu) be the minimum model of Pu. We now construct a LTL formula
ϕ, starting from Pu, such that ϕ is satisfiable iff M is finite. Predicates and terms in
Pu are modelled by means of propositions and LTL temporal operators, respectively.
In particular, atoms in Pu of the form pi(X) are modelled by means of propositions pi
and the depth of terms of atoms in M will be modelled by the states of the linear-time
structure.

Firstly, for every rule ri : p0(t0)← p1(t1), . . . , pn(tn) occurring in T u, we construct

ϕi : G.(ζ1.p1 ∧ . . . ∧ ζn.pn ⇒ ζ0.p0)

where p0, . . . , pn are propositions and ζk, where k ∈ [1..n], coincides with the “next”
temporal operator N if tk = f(X), or the empty string otherwise. Recalling that every
rule ri has just one variable X, the propositions pk in ϕi, corresponding to atoms of the
form pk(X) in ri, belong to the same state, say s (corresponding to the depth of X). The
propositions corresponding to atoms of the form pk(f(X)) belong to the state next to s.
The LTL formula ϕi encodes the fact that for every state (“always” temporal operator
G), the specified implication, modelling the behaviour of rule ri, must hold.

Next we construct the LTL formula ϕ:∧
b∈pred(Du)

b ∧
∧

ri∈T u
ϕi ∧ F.G.(

∧
p∈pred(T u)

¬p)

The formula above states that (i) at the initial state, all database propositions must
be true; (ii) all formulae simulating T u must be satisfied in every state, and (iii) there
must exist a state (“sometime” temporal operator F) from which all propositions re-
main false. This last check is also known as the ”persistence check”.

Intuitively, the first two conditions guarantee that the associations “proposi-
tion/predicate - state/depth”, simulating the atoms inMM(Pu), must satisfy the depth
relation established by rules in Pu. The latter one ensures the finiteness of M .

We now formally prove that M is finite iff the formula ϕ is satisfiable.
(⇒) Assume that M is finite. Please note that the only ground terms occurring in M
are of the form f i(ε), for some i ≥ 0. Then, we construct a linear structure K = (S, ψ)
for the formula ϕ as follows. Let S be an infinite sequence of states S = s0, s1, . . . and
let ψ be the mapping function such that:

ψ(si) = {p | p(f i(ε)) ∈M}, for i = 0, 1, . . .

It is not difficult to see that the above linear structure satisfies ϕ. Indeed, the depth
of all base predicates is 0, thus the corresponding propositions are true in the initial

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:21

state, and only in it. Since all ground rules from T u are satisfied by M , the depth
relations among atoms described by the corresponding LTL formulae ϕi are satisfied.
Finally, if d is the maximum depth of terms occurring in M , there exists a state sd+1

starting from which all propositions are false.
(⇐) Assume now that M is infinite. Then, since base atoms are flat and the maximum
nesting level of function symbols in T u is 1, for every i = 0, 1, . . . there always exists
at least one ground atom of the form p(f i(ε)) in M . That is, whatever ground term
f i(ε), of an arbitrary depth i we may consider, there must be an atom in M containing
such a term. From this consideration, it follows that every linear structure K = (S, ψ)
satisfying ϕ must be such that for every state s in S, ψ is such that ψ(s) 6= ∅. Thus,
there are infinitely many states where at least one proposition is true. Indeed, ψ(s0)
must contain (at least) all propositions corresponding to base predicates in order to
satisfy the first condition of ϕ. Moreover, it can be easily shown by induction, that
ψ(sd) must contain all propositions p such that atoms of the form p(t), where t has
depth d, occur in M . This is because formulae ϕi, for all rules ri ∈ T u used to derive
these atoms, must be satisfied.

But this would immediately imply that K cannot satisfy the formula F.G.(¬q), oc-
curring in ϕ. Thus, ϕ is not satisfiable. 2

From the proof of theorem above, we can easily show that an almost identical reduc-
tion can be adopted for the problem of checking whether a given argument q[1] of Pu
(recall that Pu is unary) is limited in MM(Pu). That is, we only need to change the
last condition of formula ϕ to the following one:

F.G.(¬q)

where only the proposition q must remain false.

In the following, we show that the previous upper bounds are also tight.

THEOREM 5.3. Let P be a program with at most one function symbol. Checking
whether the minimum model of Pu is finite is PSPACE−hard .

PROOF. To show the hardness result, we show that it holds for the subclass of
programs P with only unary predicate symbols and with at most one function sym-
bol,which is unary. In particular, note that for such kinds of programs, the correspond-
ing unary program Pu = T u ∪Du, where Du denotes the set of facts and T u all other
rules in Pu, is such that T u coincides with P (modulo predicate symbols renaming).
Thus, from Proposition 4.13, the problem of checking whether a program P is m-
restricted is tantamount to the problem of checking whether the minimum model of
P ∪D is finite, where the database D contains, for every base predicate symbol b of P,
an atom of the form b(ε).

We prove the hardness of the problem above by reduction of the acceptance problem
of a PSPACE turing machine TM = ({0, 1,⊥}, Q, q0, qa, δ), where {0, 1,⊥} denotes the
tape alphabet (⊥ is the blank symbol), Q the set of states, where q0, qa ∈ Q denote the
initial and the accepting states respectively, and δ is the transition function.

Let I = a1, . . . , am be an input string for TM and let n = poly(m) be the (polynomially
many) number of tape cells used by TM during its computation. We assume w.l.o.g.
that such n cells are extended with other n + 1 cells, where the first n cells of TM ’s
tape will be used as worktape, which will also contain the input string I at the initial
configuration. The remaining n + 1 cells will be used to store a counter. This counter
will be incremented whenever the machine TM changes its configuration. Since TM
is a PSPACE machine, it is easy to encode such a counter in binary with n + 1 bits, in
order to count the exponentially many configurations. We also assume that the head

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 Calautti et al.

of TM never attempts to move outside these 2n+ 1 cells. Finally, we assume that TM
accepts input I if the head is on the first tape cell and the state is the accepting state
qa. When TM halts in a non accepting state or the counter reaches its maximum value
(i.e., its first bit is set to 1), then the machine rejects input I.

Let us now define the unary predicate symbols needed to construct a positive normal
program simulating the computation of TM with input I.

To each i-th tape cell of TM , where 1 ≤ i ≤ 2n + 1, we associate the atom cellαi (X),
stating that at configuration X, the i-th cell contains the symbol α ∈ {0, 1,⊥}. Further-
more, we use atoms of the form countα1

1 (X), . . . , count
αn+1

n+1 (X) as shorthands for atoms
cellα1

n+1(X), . . . , cell
αn+1

2n+1(X). These atoms will represent the counter’s bits. Finally, we
use the atom headi(X) to state that the head of TM is on the i-th cell at configuration
X and the atom stateq(X) to denote that the state at configuration X is q, for every
state q ∈ Q.

We now show how the simulation of TM with input I works. We first introduce a
rule which will construct the initial configuration of TM :∧

i∈[1..m]

cellaii (X) ∧
∧

i∈[m+1..n]

cell⊥i (X) ∧
∧

i∈[1..n+1]

count0i(X) ∧ stateq0(X) ∧ head1(X)← b(X).

where b is a base predicate symbol whose database extension will contain the initial
configuration. The first m cells are filled with the symbols of input I, the remaining
n − m cells are filled with blanks and the counter’s bits are initially set to zeroes.
Furthermore, at the initial configuration, we force the current state to be q0 and the
head’s position to be 1.

Now, for every transition rule (q, α) → (q′, α′, r) ∈ δ, where r denotes the fact that
the head of TM moves to the right, we first construct the following rule, for every tape
cell position 1 ≤ i ≤ 2n+ 1:

cellα
′

i (next(X)) ∧ headi+1(next(X)) ∧ stateq
′
(next(X))←

stateq(X), headi(X), cellαi (X), count01(X).

Such a rule simply states that if at the given configuration X, the state is q, the head is
on the i-th cell, which contains symbol α and the counter has not reached its maximum
value yet (its most significant bit is zero), then at the next configuration next(X) (here
next is a unary function symbol), the i-th cell will contain the symbol α′, the head will
be on cell i+ 1 and the new state will be q′.
Next, in order to propagate all the unmodified cell values at configuration X to config-
uration next(X), we also construct the rules of the form below:

cellcj(next(X))← stateq(X), cellαi (X), headi(X), count01(X), cellcj(X).

for every other tape cell 1 ≤ j ≤ 2n+ 1 such that j 6= i and for every value c ∈ {0, 1,⊥}.
These rules essentially state that if a transition from configuration X to configuration
next(X) has to be performed, where the content of the i-th cell is modified, then all
other cells containing some value c at configuration X, (i.e., cellcj(X)) must still contain
such a value at configuration next(X).

We will construct similar rules for the transition rules whose head moves to the left.
Finally, we encode the acceptance of TM with the following rule:

accept(X)← stateqa(X), head1(X), count01(X).

Note that by construction, every predicate symbol, except for b, occurs in the head of
some of the rules above. We thus define b as base predicate symbol and all the other
predicate symbols as derived. It is not difficult to see that the machine TM accepts its

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:23

input I if and only if the model of such a program with database D = {b(ε)} contains
an accept-atom.

Now, we introduce the following additional rule:

accept(next(X))← accept(X).

With the addition of this rule, we can immediately show that TM accepts input I iff the
minimum model of the obtained program and the database D = {b(ε)} is finite. This
will show that checking finiteness ofMM(P ∪D) is coPSPACE−hard . It is well-known
that coPSPACE = PSPACE, and from the definition of coPSPACE−hardness, we show
that checking finiteness ofMM(P ∪D) is PSPACE−hard . 2

It is worth mentioning that the same reduction used in the previous theorem easily
shows that the complexity of checking whether an argument (namely, accept[1]) is m-
restricted is PSPACE−hard as well.

From the above theorems and considerations, Lemma 5.1 and Proposition 4.13, we
finally obtain the main complexity result for programs with at most one function sym-
bol.

COROLLARY 5.4. Given a program P with at most one function symbol, the com-
plexity of checking whether (an argument of) P is m-restricted is PSPACE−complete. 2

We now consider programs with an arbitrary number of function symbols. In partic-
ular, we show that for programs of this form, the computational complexity increases.

THEOREM 5.5. Let P be a program with more than one function symbol. Checking
whether the minimum model of Pu is finite is in EXPTIME.

PROOF. We denote with Du the set of facts occurring in Pu and T u denotes the
set of remaining rules, i.e., Pu \ Du. The difference between this proof and the one
of Theorem 5.2 is that we reduce our problem to the satisfiability problem of Compu-
tation Tree Logic (CTL) formulae. Please see the Appendix for details on syntax and
semantics of CTL.

Let M = MM(Pu) be the minimum model of Pu. We construct a CTL formula ϕ
starting from Pu, such that ϕ is satisfiable iff M is finite. Predicate symbols and func-
tion symbols in Pu are modelled by means of propositions of the target CTL formula,
whereas terms in Pu are modelled by the use of CTL temporal operators. Furthermore,
ground terms inside the atoms of M and their subterm relation are modelled by the
states and transition relation of the underlying transition system, respectively.

Let Prop = Π ∪ F be the set of CTL propositions such that p ∈ Π iff p is a predicate
symbol in Pu and f ∈ F iff f is a function symbol in Pu.

Firstly, for every rule ri : p0(t0)← p1(t1), . . . , pn(tn) occurring in T u, we construct

ϕi : AG.(ζ1(B1 ∧ p1) ∧ . . . ∧ ζn(Bn ∧ pn)⇒ ζ0(B0 ∧ p0))

where p0, . . . , pn are propositions from Π, and if ti = f(X), for 1 ≤ i ≤ m, then ζi
corresponds to “EN.” and Bi = f , where f is a proposition from F . Otherwise, ζi is the
empty string and Bi = true.

Intuitively, the propositions pk in ϕi, corresponding to atoms of the form pk(X) in ri,
belong to the same state, corresponding to X, say s. The propositions corresponding to
atoms of the form pk(f(X)) belong to the state corresponding to f(X), that is next to s
following the branch associated to f . Observe that if the depth of atoms corresponding
to the state s is d, then the depth of all atoms corresponding to some state next to s is
d+1. A ground instance of ri describes how the head ground atom A is derived starting
from the ground atoms corresponding to body atoms. The corresponding CTL formula
ensures that the proposition p0 is associated to the state modelling the ground term

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 Calautti et al.

in A if each proposition modelling some ground body atom is associated to the state
modelling its ground term. The CTL formula ϕi encodes the fact that in every state (i.e
independently of the value of X), the specified implication, modelling the behaviour of
rule ri, must hold.

Next, we define the CTL formula ϕ∗ guaranteeing that whenever two ground atoms
have the same (ground) term, the corresponding propositions must be true in the same
state. In particular, ϕ∗ is the following conjunction:∧

p1,p2∈Π ∧ f∈F
AG.(EN.(p1 ∧ f ∧ ¬p2)⇒ ¬EN.(p2 ∧ f))

In other words, let s be any state (AG) corresponding to a ground term u in M and
let s′ be a state next to s corresponding to the term t = f(u). We do not allow two
propositions corresponding to the same ground term t to be associated to different
states in the underlying transition system. This ensures that each term corresponds
to exactly one state.

Finally, we construct the CTL formula ϕ:∧
b∈pred(Du)

b ∧
∧

ri∈T u
ϕi ∧ ϕ∗ ∧ AF.AG.(

∧
p∈pred(T u)

¬p)

Intuitively, the first three conditions guarantee that the associations “proposi-
tion/predicate”, “state/ground terms” and “transition relation/subterm relation”,
simulating the atoms in M , must satisfy the “subterm relation” established by rules
in Pu. The latter one ensures the finiteness of M , which is similar to the “persistence
check” shown for the one function symbols case. This formula essentially states that
whatever path we consider on the underlying transition system, there is a time
instant from which all propositions will never become true again. We now show that
M is finite iff the formula ϕ above is satisfiable.

(⇒) Assume that M is finite and let G be the set of ground terms occurring in
the atoms of M . We construct the following transition system T = (S, sε, R, ψ). The set
S of states is defined as S = {st | t ∈ G} ∪ {se}. Intuitively, for every term t occurring
in M we construct a state st. In particular, when t = ε, sε is the state of S denoting the
initial state of the transition system. Finally, the state se denotes the “empty” state
in which no propositions might occur. In fact, the function ψ : S → 2Prop is defined as
follows:

— ψ(sε) = {p | p(ε) ∈M};
— ψ(st) = {p | p(t) ∈M} ∪ {f}, for each st ∈ S where t = f(u);
— ψ(se) = ∅.
Finally, R is the serial transition relation such that:

— for every st, su ∈ S, where u = f(t), stRsu holds;
— for every st ∈ S such that there is no su ∈ S with u = f(t), stRse holds;
— seRse holds.

(⇐) Assume now that a transition system T = (S, s0, R, ψ), such that T, s0 |= ϕ,
exists, but M is infinite. Let Tree(T) be the tree-like structure describing T . Note that
since database atoms are flat and the maximum nesting level of function symbols in
T u is 1, for every d ≥ 0, there is always at least one ground atom in M , whose term
has depth d. From this consideration, it follows that the transition system T satisfying
ϕ must satisfy the following property: for each d ≥ 0 there exists a state s belonging to
level d in Tree(T). Indeed, ψ(s0) must contain (at least) all propositions corresponding
to base predicates in order to satisfy the first condition of ϕ. Moreover, it can be easily

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:25

shown by induction on d, that for every atom p(t) in M , where t has depth d, there
exists a state s at level d of Tree(T) such that p ∈ ψ(s). This is because the conjunction
ϕ∗ and the formulae ϕi, for all rules ri ∈ T u used to derive p(t), must be satisfied.

However, this would immediately imply that T cannot satisfy the formula
AF.AG.(¬q), occurring in ϕ. Thus, ϕ is not satisfiable. 2

In the same spirit of the one function symbol case, we can exploit the proof of the
theorem above to provide an EXPTIME procedure for checking whether an argument
q[1] is limited inMM(Pu). That is, we only need to change the last condition of formula
ϕ to the following one:

AF.AG.(¬q)

stating that in every path, there exists a state s such that in all paths starting from s,
q remains false.

As we show in the next theorem, the EXPTIME upper bound is optimal. We point
out that a proof for the problem below can be easily obtained from the proof of The-
orem 5.3. Indeed, it is well-known that APSPACE = EXPTIME, where APSPACE de-
notes alternating PSPACE. So, it suffices to encode a PSPACE Turing machine via a
logic program as already shown in the proof of Theorem 5.3, and then implement the
acceptance part specifically for PSPACE machines with alternation. However, for the
sake of completeness, we give the full proof below.

THEOREM 5.6. Let P be a program with more than one function symbol. Checking
whether the minimum model of Pu is limited is EXPTIME−hard .

PROOF. We prove the desired hardness result by reduction of the acceptance prob-
lem of an APSPACE turing machine TM = ({0, 1,⊥}, Q, q0, qa, δ), where {0, 1,⊥} de-
notes the tape alphabet (⊥ is the blank symbol), Q the set of states, where q0, qa ∈ Q
denote the initial and the accepting states respectively, and δ is the transition function.
Furthermore, the set Q is partitioned into two sets Qu and Qe, denoting universal and
existential states respectively. We can assume w.l.o.g. that every transition in δ is of
the form (q, α) → {(q′, α′,m′), (q′′, α′′,m′′)}. That is, the machine TM may only move
its configuration to at most two configurations.

Let I = a1, . . . , am be an input string for TM and let n = poly(m) be the (polynomialy
many) number of tape cells used by TM during its computation. We assume w.l.o.g.
that such n cells are extended with other n + 1 cells, where the first n cells of TM ’s
tape will be used as worktape, which will also contain the input string I at the initial
configuration. The remaining n + 1 cells will be used to store a counter. This counter
will be incremented whenever the machine TM changes its configuration. Since TM is
an APSPACE machine, it is easy to encode such a counter in binary with n+ 1 bits, in
order to count the exponentially many configurations. We also assume that the head
of TM never attempts to move outside these 2n + 1 cells. When TM halts in a non
accepting configuration or the counter reaches its maximum value (i.e., its first bit is
set to 1), then the machine rejects input I, otherwise the machine accepts input I.

We now start by constructing a positive normal program, denoted by P ′, simulating
the computation of TM with input I. Let us first define the unary predicate symbols of
P ′.

To each i-th tape cell of TM , where 1 ≤ i ≤ 2n + 1, we associate the atom cellαi (X),
stating that at configuration X, the i-th cell contains the symbol α ∈ {0, 1,⊥}. Further-
more, we use atoms of the form countα1

1 (X), . . . , countαn+1
n+1 (X) as shorthands for atoms

cellα1

n+1(X), . . . , cell
αn+1

2n+1(X). These atoms will represent the counter’s bits. Finally, we
use the atom headi(X) to state that the head of TM is on the i-th cell at configuration

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:26 Calautti et al.

X and the atom stateq(X) to denote that the state at configuration X is q, for every
state q ∈ Q.

We now show how the simulation of TM with input I works. We first introduce a
rule which will construct the initial configuration of TM :∧

i∈[1..m]

cellaii (X) ∧
∧

i∈[m+1..n]

cell⊥i (X) ∧
∧

i∈[1..n+1]

count0i(X) ∧ stateq0(X) ∧ head1(X)← b(X).

where the first m cells are filled with the symbols of input I, the remaining n−m cells
are filled with blanks and the counter’s bits are initially set to zeroes.

Now, for every transition rule (q, α) → {(q′, β,→), (q′′, γ,←)} ∈ δ, we first construct,
for every 1 ≤ i ≤ 2n+ 1 the following rules:

cell
β
i (f1(X)) ∧ headi+1(f1(X)) ∧ stateq′(f1(X))← stateq(X), cellαi (X), headi(X), count01(X).

cell
γ
i (f2(X)) ∧ headi−1(f2(X)) ∧ stateq′′(f2(X))← stateq(X), cellαi (X), headi(X), count01(X).

stating that if at the given configuration X, the state is q, the head is on the i-th cell,
which contains symbol α and the counter has not reached its maximum value yet, then
the machine may move to one of the two allowed configurations f1(X) and f2(X), where
the i-th cell will contain symbol β (resp., γ), the head will be on cell i + 1 (resp., i − 1)
and the new state will be q′ (resp., q′′).
Next, in order to propagate all the unmodified cell values at configuration X to the
corresponding next configuration, we also construct the rules of the form below:

cellcj(f1(X))← stateq(X), cellαi (X), headi(X), count01(X), cellcj(X).
cellcj(f2(X))← stateq(X), cellαi (X), headi(X), count01(X), cellcj(X).

for every 1 ≤ i ≤ 2n + 1 and for every other tape cell 1 ≤ j ≤ 2n + 1 such that j 6= i
and for every value c ∈ {0, 1,⊥}. The rules essentially state that if a transition from
configuration X to configuration f1(X) (resp., configuration f2(X)) has to be performed,
where the content of the i-th cell is modified, then, all other cells containing some value
c at configuration X, (i.e., cellcj(X)) must still contain such a value at configuration f1(X)

(resp., f2(X)).
We can construct almost identical rules for the case where the head moves to different
directions for both configurations.

The main difference with the one function symbol case is how the acceptance of
TM with input I is encoded via normal positive rules. To do so, we recursively define
whether a configuration X is an accepting configuration.

Clearly, the configuration where the current state is qa is an accepting configuration:
accepting(X)← stateqa(X).

Furthermore, for every universal state u ∈ Qu, if some configuration X has state u,
and the next two configurations f1(X) and f2(X) are accepting configurations, then X is
accepting as well:

accepting(X)← stateu(X), accepting(f1(X)), accepting(f2(X)).

Similarly, if e ∈ Qe is an existential state and some configuration X has state e and one
of the next two configurations is accepting, then X is accepting:

accepting(X)← statee(X), accepting(f1(X)).
accepting(X)← statee(X), accepting(f2(X)).

Finally, the machine accepts if the initial configuration is an accepting configuration:
accept(X)← accepting(X), b(X).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:27

As for the one function symbol case, we also add the rule:

accept(f1(X))← accept(X).

With the addition of this rule, we can immediately show that TM accepts input
I iff the minimum model of the obtained program and the database D = {b(ε)} is
finite. This will show that checking whether the minimum model of a program of
the form of Pu with at most two function symbols is finite is coAPSPACE−hard and
thus coEXPTIME−hard . Since, coEXPTIME = EXPTIME, and from the definition of
coEXPTIME−hardness, we show that the problem is EXPTIME−hard . 2

Also in the multiple function symbols case, the proof of the theorem above can be
used to show EXPTIME−hardness for the problem of checking whether an argument
(namely, accept[1]) is limited inMM(Pu).

We conclude this section by providing the desired complexity result for checking m-
restrictedness in the case of programs allowing more than one function symbol.

COROLLARY 5.7. Given a program P with more than one function symbol, the com-
plexity of checking whether (an argument of) P is m-restricted is EXPTIME−complete. 2

6. EXTENDING MAPPING-RESTRICTION
In this section, we present an extension of the technique proposed in Section 4.
This extension allows arbitrary nesting and constants in programs, preventing the
proliferation of rules that would make the meaning of programs hard to understand.
In Subsection 6.1 we first refine the analysis of the structure that terms may have
during the bottom-up evaluation of a program. As a second improvement, in Sub-
section 6.2 we show that the terms propagated in some argument p[i] are strongly
related to the terms propagated in other arguments of p, when the so-called “steadily
restricted” condition holds. Finally, in Subsection 6.3, we show that the new technique
remains EXPTIME−complete in the general case. However, PSPACE−completeness is
guaranteed only in the case that at most one fuction symbol is allowed and such a
symbol is unary.

6.1. Argument position inside complex terms
Most termination criteria, including the m-restricted technique, do not take into ac-
count the position in which simple terms may occur inside atoms and rules. The possi-
bility to distinguish whether a variable occurs in a particular position within a complex
term, gives additional information on how values are propagated between arguments
during the bottom-up evaluation of the program. The following example clarifies the
importance of considering the position of terms inside other terms.

Example 6.1. Consider the program P, where the only base predicate is b:

r1 : q(g(X)) ← b(X).
r2 : p(f(X, Y)) ← b(X), q(Y).
r3 : t(X) ← p(f(X, X)).
r4 : t(g(X)) ← t(X).

Starting from any database, it is impossible to derive an atom of the form p(f(t, t)),
where t is a ground term. Consequently, rule r3 and the recursive rule r4 cannot be
activated. Thus, P is terminating. The corresponding program Pu, used to compute

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:28 Calautti et al.

the minimum supported m-set is reported below:

ρ0 : b1(ε).
ρ1 : q1(g(X)) ← b1(X).
ρ2.1 : p1(f(X)) ← b1(X).
ρ2.2 : p1(f(Y)) ← q1(Y).
ρ3 : t1(X) ← p1(f(X)).
ρ4 : t1(g(X)) ← t1(X).

Unfortunately, Pu does not consider the position of terms inside other terms, trans-
forming rule r3 into ρ3. The fact that argument p[1] has a complex term containing
a variable occurring twice is lost. The minimum model of Pu is infinite and thus the
m-restricted criterion does not detect the termination of P. 2

We propose an extension of the m-restricted technique which is able to overcome
the limitation discussed above. We assume that the database contains flat facts only,
whereas programs may contain constants and ground facts (with complex terms), and
there is no limitation on the maximum nesting level of terms.

The analysis of programs is now performed via an extended version of the unary
program Pu. Let us start with some preliminary notations.

We assume a fixed linear order for each simple term occurring in a rule; the different
m occurrences of a simple term t are denoted by t1, . . . , tm. For instance, considering
rule r2 : p(f(X, Y)) ← b(X), q(Y) in Example 6.1, occurrences of variables in the head
are denoted X1 and Y1 whereas body occurrences are denoted by X2 and Y2. The next
definition allows us to build, given a rule r and an occurrence tj of a simple term t in
r, a unary atom containing t, where each predicate or function symbol has associated
a subscript denoting the position of t inside the atom or (complex) term.

Definition 6.2. Let tj be an occurrence of a simple term t in a rule r. We denote with
path(r, tj) the atom defined as:

path(r, tj) = path′(A, tj)

where A is the atom of r where tj occurs. path′(ϕ, tj), where ϕ denotes either an atom
or a term, is defined recursively as follows:
— path′(ϕ, tj) = ε, if ϕ is a constant;
— path′(ϕ, tj) = ϕ, if ϕ is a variable;
— path′(ϕ, tj) = fi(path

′(ti, t
j)), if ϕ = f(t1, . . . , tn) where f is either a predicate or a

function symbol and ti is the term where tj occurs. 2

For example, consider the rule r = p(f(X, g(c)), X) ← q(g(X)). Let X1, X2 and X3 be the
three occurrences of X in r and c1 be the occurrence of c. We have that path(r, X1) =
p1(f1(X)), path(r, X2) = p2(X), path(r, c1) = p1(f2(g1(ε))) and path(r, X3) = q1(g1(X)).

By making use of the notion of path defined above, we now show how to construct,
starting from a program P, a unary program Pυ where subscripts are also associated
to function symbols. This allows to track down the position of simple terms inside
complex terms.

Definition 6.3. Given a program P, Pυ denotes the unary program consisting of the
rules derived from P as follows:
— for every argument b[i] ∈ argb(P), Pυ contains a fact bi(ε);

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:29

— for every rule r ∈ P and every occurrence of a constant ej in head(r) we add the
following rule in Pυ if it is nontrivial:

path(r, ej)←
∧

choccurs in body(r)

path(r, ch)

— for every rule r ∈ P and every variable occurrenceXj in head(r) we add the following
rule in Pυ if it is nontrivial:

path(r,Xj)←
∧

Xkoccurs in body(r)

path(r,Xk) ∧
∧

choccurs in body(r)

path(r, ch)

where ch denotes an occurrence of constant c in the body of r. 2

Example 6.4. Consider the program of Example 1.2. Using cons to denote the list
constructor function symbol and null to denote the constant corresponding to the
empty list, we can rewrite the program of Example 1.2 to the following program P:

r1 : reverse(cons(a, cons(b, cons(c, null))), null).
r2 : reverse(L1, cons(X, L2))← reverse(cons(X, L1), L2).

The corresponding unary program Pυ is reported below:

ρ1.1 : reverse1(cons1(ε)).
ρ1.2 : reverse1(cons2(cons1(ε))).
ρ1.3 : reverse1(cons2(cons2(cons1(ε)))).
ρ1.4 : reverse1(cons2(cons2(cons2(ε)))).
ρ1.5 : reverse2(ε).

ρ2.1 : reverse1(L1) ← reverse1(cons2(L1)).
ρ2.2 : reverse2(cons1(X))← reverse1(cons1(X)).
ρ2.3 : reverse2(cons2(L2))← reverse2(L2).

Rules of the form ρi.j model the corresponding rule ri of P. In particular,
ρ1.1 − ρ1.5 model the presence of constants a, b, c and null in the ground fact
reverse(cons(a, cons(b, cons(c, null))), null). Since null occurs twice, two rules ρ1.4

and ρ1.5 describing its occurrences are created. Rules ρ2.1 − ρ2.3 model the derivation
of variables L1, X and L2 in r2. 2

Example 6.5. As another example, consider the program P of Example 6.1. The
corresponding unary program Pυ is as follows:

ρ1 : b1(ε).
ρ2 : q1(g1(X)) ← b1(X).
ρ3 : p1(f1(X)) ← b1(X).
ρ4 : p1(f2(X)) ← q1(X).
ρ5 : t1(X) ← p1(f1(X)), p1(f2(X)).
ρ6 : t1(g1(X)) ← t1(X).

The minimum model of Pυ is M = {b1(ε), q1(g1(ε)), p1(f1(ε)), p1(f2(g1(ε)))}. Observe
that M is finite, whereas the minimum model of Pu reported in Example 6.1 is infi-
nite. 2

The new version of the derived unary program can be used to extend the m-
restricted technique. In particular, we define the class of extended m-restricted pro-
grams/arguments (em-restricted for short) and show the correctness of our approach.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:30 Calautti et al.

Definition 6.6 (Extended m-restricted programs). An argument p[i] occurring in a
program P is said to be em-restricted iff pi[1] is limited inMM(Pυ).

The set of all em-restricted arguments of P is denoted by EMR(P) and P is said to
be em-restricted iff EMR(P) = arg(P), i.e.,MM(Pυ) is finite. The set of em-restricted
programs is denoted by EMR. 2

We point out that although the definition above relies on the construction of Pυ,
it is still possible to define em-restricted programs/arguments via more declarative
definitions, as in Definitions 4.2 and 4.4 of Section 4. However, we think that such
definitions would be too involved and do not add much to the proposed approach. Thus,
for the sake of clarity, we provide such alternative definitions in Appendix B.

We are now ready to present our main correctness results.

THEOREM 6.7. Given a program P and an argument p[i] ∈ arg(P), then

(1) p[i] ∈ EMR(P) implies that p[i] is limited in P;
(2) P ∈ EMR implies that P is terminating.

PROOF. To simplify the discussion, we focus on constant-free programs having
terms with nesting level at most one. We start by proving the following. For every
program P and database D, if a (ground) atom A is derived using the immediate con-
sequence operator at step i, i.e.,A ∈ T i

PD (∅), then for each constant’s occurrence ej inA,
there is an atom path(A, ej) in T i

Pυ (∅). Furthermore, the depth of path(A, ej) coincides
with the depth of the occurrence ej in A.

First observe that D is composed by flat facts only, whereas Pυ contains a fact bk(ε)
for every b[k] ∈ argb(P). Suppose now that our statement is true on step i. We now show
that it is true on step i+ 1 too. Suppose that we derive an atom A by applying T i+1

PD (∅)
by using rule r in P. This means that all ground atoms in its body belong to T i

PD (∅).
Consequently, path(B, ch) is true in T i

Pυ (∅) for every constant’s occurrence ch in B for
every body atom B of r. Consequently, all rules derived from r in the unary program
Pυ can be applied and path(A, ej) is true in T i+1

Pυ (∅) for every constant’s occurrence ej
in A. Observe that the depth of path(A, ej) coincides with the depth of the occurrence
ej in A by definition.

Now, with this result in hand, we prove the theorem.
(1) Suppose that there is an atom A whose argument p[i] is em-restricted, but not

limited in P. Then, for any depth d there is a step, say k, such that some constant’s
occurrence ej in the i-th argument of A has depth k in T k

PD (∅). Yet this implies that the
corresponding atom path(A, ej) has depth d in T k

Pυ (∅). Consequently, pi[1] is not limited
in the minimal model of Pυ and p[i] cannot be em-restricted. This leads to the desired
contradiction.

(2) This follows from Item 1 and from the fact that a program is terminating iff every
argument is limited. 2

The revised technique extends the one previously defined. In fact, as shown in the
proof of the following theorem, the new approach recognizes larger sets of limited ar-
guments and terminating programs.

THEOREM 6.8. For every program P:

(1) MR(P) ⊆ EMR(P);
(2) P ∈MR⇒ P ∈ EMR.

PROOF. Assuming constant-free programs, where the nesting level of terms is at
most one, the definition of Pυ can be simplified as follows:

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:31

— for every argument b[i] ∈ argb(P), Pυ contains a fact bi(ε);
— for every rule r ∈ P and every variable occurrence Xj in head(r), Pυ contains a rule:

path(head(r), Xj)←
∧

Xjoccurs in body(r)

path(r,Xj)

if it is not trivial.

Observe also that the program Pu can be obtained from Pυ by first deleting
subscripts from the function symbols, then deleting the eventual duplicate body
atoms/rules, and, at the end, by deleting trivial rules. This means that for every
ground atom A derived by the immediate consequence operator T k

Pυ (∅) on step k,
there is a corresponding atom A′, obtained from A by deleting the subscripts from its
function symbols, belonging to T k

Pu(∅).

(1) Consider an atom A of P and suppose that its argument p[i] is m-restricted,
but not em-restricted. Since p[i] is not em-restricted, then for any depth d there is an
atom H = path(A, ej), where ej is the occurrence of some constant in the i-th argument
of A, having depth d in T k

Pυ (∅) on some step k. From the observation above, it follows
that H ′ ∈ T k

Pu(∅), where H ′ is obtained from H by deleting the subscripts from its
function symbols and describes the same constant occurrence ej in the i-th argument
of A. Consequently, pi[1] is not limited in the minimum model of Pu and p[i] cannot be
m-restricted. This leads to the desired contradiction.

(2) The weaker inclusion MR ⊆ EMR follows from Item 1, whereas the stronger one
follows from the fact that the program P of Example 6.1 is em-restricted but non
m-restricted. 2

6.2. Steadily restricted arguments
In this section we will show that even if a program P is not recognized as em-
restricted, the set of em-restricted arguments EMR(P) can be profitably exploited
to compute a larger set of limited arguments of P. In particular, we show that if an
em-restricted argument p[i] enjoys the so-called “steadily restricted” property, then
any other argument of the predicate symbol p is guaranteed to be limited.

Let P be a program. A stratification of Pυ is a partition of Pυ into sub-programs
Pv1, . . . ,P

v
n (called strata) where for each predicate p of Pυ, all rules defining p are

contained in a stratum, the recursive rules occurring in the same stratum are mutually
recursive, and for every 1 ≤ k ≤ n, if a predicate q occurs in the body of a rule in Pvk,
all rules defining q are contained in a stratum Pvj , with j ≤ k. Finally, a rule r of some
stratum Pvk is an exit rule of Pvk if it is not recursive, i.e., if body(r) contains only base
predicates or predicates defined by rules occurring in strata Pvj , with j < k.

Example 6.9. Consider the program Pυ of Example 6.4. We have that Pυ can be
partitioned into the strata Pv1 = {ρ1.1, ρ1.2, ρ1.3, ρ1.4, ρ2.1} and Pv2 = {ρ1.5, ρ2.2, ρ2.3},
defining the predicate symbols reverse1 and reverse2 respectively. Furthermore, all
rules of Pv1, except for ρ2.1 are exit rules of Pv1, whereas rules ρ1.5, ρ2.2 are the exit
rules of Pv2. 2

We are now ready to define the notion of steadily restricted arguments. Recall that
for every argument p[i] of P, there exists a corresponding predicate symbol pi in the
unary program Pυ and vice versa.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:32 Calautti et al.

Definition 6.10 (Finitely decreasing stratum). Let P be a program and let Pv1,
. . . ,Pvn be a stratification of Pυ. We say that a stratum Pvk is finitely decreasing if
for each predicate pi in Pvk, the argument p[i] of P is em-restricted and for every rule
ρ ∈ Pvk derived from a recursive rule of P, the following conditions hold:

— ρ is not ground and recursive, and
— for every atomB ∈ body(ρ) which is mutually recursive with head(ρ), dept(head(ρ)) <
dept(B) holds. 2

Example 6.11. Let P be the program of Example 1.2 and Pυ be the correspond-
ing unary program shown in Example 6.4. Considering the stratification of Pυ, Pv1 =
{ρ1.1, ρ1.2, ρ1.3, ρ1.4, ρ2.1} and Pv2 = {ρ1.5, ρ2.2, ρ2.3}, we have that Pv1 is finitely decreas-
ing. This is because the argument reverse[1] is em-restricted and the only rule in Pv1
derived from a recursive rule of P (namely ρ2.1) is not ground, recursive and the depth
of the body atom is strictly greater than the depth of the head atom. 2

Intuitively, the recursive rules occurring in the finitely decreasing stratum propa-
gate a value among them and the depth of this value decreases during the propaga-
tion. The propagation of a value among the recursive rules is guaranteed because they
are not ground. Indeed, every rule in Pυ has just one variable, and every not ground
rule in Pυ has a variable both in its head and in its body by construction of Pυ. The
depth of the propagated value decreases since for every recursive rule the depth of the
head atom is strictly smaller than the depth of any body atom.

Definition 6.12 (Steadily restricted argument). Let P be a program and Pv1, . . . ,P
v
n

be a stratification of Pυ. An argument p[i] of P is said to be steadily restricted if:

(1) there exists a predicate pj (possibly equal to pi) defined in a finitely decreasing
stratum of Pυ, and

(2) let Pvk be the stratum where pi is defined, for every predicate qj occurring in the
body of some exit rule of Pvk, q[j] is em-restricted. 2

Clearly, in Item (2) we could have considered all arguments recognized as limited by
some criterion.

Example 6.13. Consider again the program P of Example 1.2 and the transformed
program Pυ of Example 6.4, with stratification Pv1 = {ρ1.1, ρ1.2, ρ1.3, ρ1.4, ρ2.1} and
Pv2 = {ρ1.5, ρ2.2, ρ2.3}. We have that the argument reverse[2] of P is steadily restricted.
In fact, there exists the predicate reverse1, which is defined in the finitely decreasing
stratum Pv1. Furthermore, the exit rules of Pv2 (i.e., where reverse2 is defined) are ρ1.5

and ρ2.2 and the only predicate occurring in their body is reverse1, whose correspond-
ing argument reverse[1] is em-restricted. 2

Observe that in the example above the stratification of Pυ was unique. In the gen-
eral case, Pυ may have different stratifications. However, since the recursive rules
occurring in the same stratum must be mutually recursive (see the definition of strat-
ification) the choice of the particular stratification does not influence the “steadily re-
stricted” property of an argument of P. Thus, any of them can be chosen in an arbitrary
way.

PROPOSITION 6.14. Given a program P, every steadily restricted argument of P is
also limited in P.

PROOF. Let P be a program and p[i] be a steadily restricted argument of P and D
be a database. Consider now a ground atom A of the form p(t1, . . . , tn) derived at step
k using the immediate consequence operator, i.e., A ∈ T k

PD (∅) using rule r of P.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:33

As shown in the proof of Theorem 6.7, for each constant’s occurrence ej in A, there
is an atom path(A, ej) in T k

Pυ (∅) and the depth of path(A, ej) coincides with the depth
of the occurrence ej in A. (Result 1)

Since ti may be a complex term, different constant occurrences may be present in
it, and for each of them there is a ground atom of the form pi(. . .) in T k

Pυ (∅) in Pυ,
defined by means of a corresponding rule in Pυ. We denote by Atoms(r,A, i) the set of
such pi-atoms in T k

Pυ (∅) and denote by Rules(r,A, i), the rules of Pυ used to derive the
atoms in Atoms(r,A, i).

It follows from Result 1 that the depth of ti coincides with the maximum depth of
the atoms in Atoms(r,A, i). (Result 2)

Let us now consider the rule r used to derive A ∈ T k
PD (∅).

1. If r is not recursive, then the corresponding rules in Rules(r,A, i) are the exit
rules of the stratum where pi is defined, and all body atoms of rules in Rules(r,A, i)
have limited arguments. Let d be the upper bound of the depth of terms occurring in
limited arguments of MM(Pυ) and ∆ be the upper bound for term growth after the
application of one rule in Pυ. Obviously, d and ∆ are finite and dept(B) < d + ∆ for
every B ∈ Atoms(r,A, i). Thus, from Result 2, dept(ti) cannot be unbounded too.

2. If r is recursive, then there exists a p[j], such that pj is defined in finitely decreas-
ing stratum of Pυ. We assumed that A was obtained on step k using the immediate
consequence operator. Suppose that the next step of the immediate consequence oper-
ator that uses rule r is k1 and let us call A1(u1, . . . , un) the atom derived by means of
this application of r.

It follows from Result 2, that dept(tj) and dept(uj) coincide with the maximum depth
of atoms in Atoms(r,A, j) and Atoms(r,A1, j), respectively.

Since pj is defined in a finitely decreasing stratum of Pυ, the depth of atoms
in Atoms(r,A1, j) must be smaller than the depth of the corresponding atoms in
Atoms(r,A, j). Consequently, dept(uj) < dept(tj). This reasoning can be extended to
the further application of r. Since we know that p[j] is em-restricted, we conclude that
r can be applied only a finite number of times.

Since, (1) each non-recursive rule defining predicate p in P cannot be used to gener-
ate a term of unbounded depth in the i-th argument of A and (2) each recursive rule
defining predicate p in P can be applied only a finite number of times, p[i] must be
limited. 2

As a remark, the definition of steadily restricted arguments along with Proposi-
tion 6.14 above allow us to establish a connection between different arguments of the
same predicate symbol. Furthermore, we can profitably exploit such a result together
with the techniques defined in this paper in order to determine the termination of
different practical programs.

Example 6.15. Consider the following program P merging two lists:

r1 : merge([a, b], [c, d, e], []).
r2 : merge(L1, L2, [X|[Y|L3]])← merge([X|L1], [Y|L2], L3)
r3 : merge([], L2, [Y|L3])← merge([], [Y|L2], L3)
r4 : merge(L1, [], [X|L3])← merge([X|L1], [], L3)

The arguments merge[1] and merge[2] are em-restricted, whereas merge[3] is steadily
restricted. Indeed, the program Pυ (reported in Appendix B) consists of two strata
Pv1 and Pv2 defining, respectively, { merge1, merge2} and merge3. Furthermore, Pv2 de-
pends on the finitely decreasing stratum Pv1. The exit rules of Pv2 are ρ2.3, ρ2.4, ρ3.2

and ρ4.2. The body predicates of these rules are merge1 and merge2 that correspond to
em-restricted arguments of P. Therefore, the program P is terminating. 2

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:34 Calautti et al.

6.3. Complexity results
As previously stated, complexity results for the extended version of our technique can
be obtained from results for the original criterion. That is, we first need to show that
the construction of Pυ, given a program P, is negligible (i.e., it is feasible in polynomial
time w.r.t. size(P)). Once such a result is shown, we can use the results introduced in
Section 5 to show the complexity of computing the set of em-restricted arguments of P.

LEMMA 6.16. Given a program P, the unary program Pυ is computable in polyno-
mial time w.r.t. size(P).

PROOF. We start by showing that constructing the atom path(r, ej) for some rule
r ∈ P and some simple term occurrence ej in r is a linear time procedure. To show the
above result consider the following. An atom (resp. term) A occurring in P can be seen
as a tree. In particular we use tree(A) to denote the following tree: if A is a simple
term, tree(A) is the singleton tree where the only node is labeled with A. Otherwise,
let A = p(t1, . . . , tn), where p is either a predicate or a function symbol, then tree(A)
is the tree having the root node labeled with p and whose children are tree(ti), for
1 ≤ i ≤ n. Please note that given a simple term e occurring in A, every occurrence ej
of e in A, for some j is a leaf of tree(A). Thus, constructing path(r, ej), for some rule
r ∈ P is equivalent to the problem of traversing tree(A), where A is the atom of r in
which ej occurs, in a depth first fashion, until a leaf labeled with e is found for the j-th
time. The path that leads from the root to this leaf describes the atom path(r, ej). Tree
traversal is a linear time procedure, and thus the construction of path(r, ej) is linear
time as well. We are now ready to show our result. From Definition 6.3, Pυ contains
the following rules: a linear number of facts, each one constructible in constant time
and a rule constructed for every rule r ∈ P and simple term occurrence ej in r. From
the definition of size(P), the number of rules of P and the number of simple terms
occurrences are linear w.r.t. size(P), thus the number of rules in Pυ is polynomial w.r.t.
size(P). Furthermore, since the construction of “path” atoms is linear, the construction
of all rules of Pυ is a polynomial time procedure as well. 2

In the following, to simplify the complexity analysis, we focus on constant-free
programs with nesting level of terms not greater than one. We show that for pro-
grams having at most one function symbol and such a symbol is unary, checking
em-restrictedness is PSPACE−complete, whereas in all other cases, the problem is
EXPTIME−complete.

Intuitively, the PSPACE bounds for the unary function symbol case hold because for
such programs P, Pυ belongs to the same class of programs to which the simpler Pu
belongs to.

THEOREM 6.17. Given a program P, checking whether a program P is em-restricted
is PSPACE−complete if P admits at most one function symbol and this symbol is unary.

PROOF. Observe that when a program P has only one function symbol and such
a symbol is unary, the corresponding program Pυ contains only one function symbol
of the form f1. Indeed, Pυ coincides with Pu, when the subscript is removed from f1.
Thus, we immediately prove the claim from Theorem 5.2 and Theorem 5.3. 2

The proof above easily shows that also checking whether an argument of P is
em-restricted is PSPACE−complete, when P has only one function symbol which is
unary.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:35

Suppose now that P admits one or more function symbols of any arity. Regarding the
EXPTIME upper bound, we exploit the proof shown for Theorem 5.5. For the hardness
result, we cannot directly make use of previous results. This follows from the fact that
when P contains only one function symbol of any arity, the corresponding program Pυ
might not be of the form needed by the hardness proof given for Theorem 5.6.

Therefore, we first prove the following lemma.

LEMMA 6.18. Given a program P, checking whether (an argument of) P is em-
restricted is EXPTIME−hard even if P admits at most one function symbol and this
symbol is binary.

PROOF. We need to show that there exists a program P with only one function
symbol where this symbol is binary such that Pυ is expressive enough to simulate the
computation of an EXPTIME Turing machine.

To this aim, we proceed as follows. Let P ′ be the unary program shown in the proof
of Theorem 5.6 simulating the computation of an EXPTIME Turing machine. We show
how to construct a program P, having only one function symbol (which is binary),
whose unary program Pυ ”almost” coincides with P ′. This will immediately show that
there actually exists a program with one function symbol and this symbol is binary,
such that checking whether such a program is em-restricted is EXPTIME−hard .

In particular, the construction of P can be performed as follows. We modify P ′ by sub-
stituting each occurrence of f1(X) (resp. f2(X)) with f(X, Dummy) (resp. f(Dummy, X)), where
Dummy is a new variable not occurring in P ′. Next, we add an atom b(f(Dummy, Dummy))
with base predicate symbol b to the body of each rule having the variable Dummy in its
head. As an example, consider the rule of P ′:

accept(f1(X))← accept(X).

The constructed rule using Dummy variables is:

accept(f(X, Dummy))← accept(X), b(f(Dummy, Dummy)).

This rule will have two corresponding rules in Pυ:

accept1(f1(X))← accept1(X).
accept1(f2(Dummy))← b1(f1(Dummy)), b1(f2(Dummy)).

The construction described above leads to the program P that has exactly one func-
tion symbol where this symbol is binary. Its unary program Pυ has the same rules
as P ′ (up to predicate symbols renaming) plus the rules with variable Dummy (i.e.,
Dummy-rules). Observe that Dummy-rules cannot be activated since their body atoms
b1(f1(Dummy)), b1(f2(Dummy)) contain complex terms inside the base predicate symbol
b1, but databases my contain only flat atoms. Consequently, Pυ simulates the compu-
tation of an EXPTIME Turing machine as well as P ′. 2

With the previous lemma in place, we can finally show the complexity of checking
em-restrictedness in the general case.

THEOREM 6.19. Given a program P, checking whether a program P is em-restricted
is EXPTIME−complete.

PROOF. The EXPTIME upper bound follows from the proof shown for Theorem 5.5.
Regarding the EXPTIME−hardness, If P contains more than one function symbol of
arbitrary arity, em-restricted programs strictly contain the m-restricted ones. So the
lower bound immediately follows. If P contains only one function symbol that is at
least binary, the hardness follows from Lemma 6.18. 2

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:36 Calautti et al.

The above complexity result also holds for the problem of checking whether an ar-
gument of P is em-restricted.

7. CONCLUSIONS
In this paper, we have presented a new technique for checking whether the bottom-
up evaluation of logic programs with function symbols terminates. The technique is
based on the definition of mappings from arguments to strings of function symbols
representing possible values which could be taken by arguments during the bottom-
up evaluation. Such mappings can be computed through the evaluation of a unary
program Pu derived from the input program P. As finiteness of the minimum model
of Pu is decidable, its evaluation gives us a set of limited arguments of the original
program, called m-restricted.

Precise complexity results and relative expressive power are also discussed. In par-
ticular, we have shown that the complexity is EXPTIME−complete in general and
PSPACE−complete when only one function symbol is allowed. Furthermore, our tech-
nique generalizes previous approaches, such as AR, but is incomparable with other
recently proposed techniques. The technique can be easily combined with other tech-
niques such as Adornment rewriting [Greco et al. 2013b], a recently proposed orthogo-
nal method that transforms a program into an adorned equivalent one. The idea is to
apply the termination criteria to the adorned program rather than to the original one,
(strictly) enlarging the class of programs recognized as terminating.

Then, we defined an extended version of the proposed approach that is able to fur-
ther enlarge the class of programs identified as terminating. Complexity results of the
extension have been provided as well, by modifications of the proofs for the original
technique. Concerning the computational complexity, we point out that termination
checking is a compile time operation and the high complexity results are with respect
to the size of the program which is usually much smaller than the size of the database.
Furthermore, although we have studied the general case where programs allow dif-
ferent function symbols, we point out that in several contexts where function symbols
are used to model stratification of rules, temporal phenomena or implement the object
model in logics, just one unary function symbol is needed.

Aknowledgements. The authors would like to thank Cristian Molinaro and the
anonymous referees for the useful comments.

REFERENCES
Sabrina Baselice, Piero A. Bonatti, and Giovanni Criscuolo. 2009. On finitely recursive programs. Theory

and Practice of Logic Programming 9, 2 (2009), 213–238.
Catriel Beeri and Moshe Y. Vardi. 1984. A Proof Procedure for Data Dependencies. J. ACM 31, 4 (1984),

718–741.
Piero A. Bonatti. 2004. Reasoning with infinite stable models. Artificial Intelligence 156, 1 (2004), 75–111.
Maurice Bruynooghe, Michael Codish, John P. Gallagher, Samir Genaim, and Wim Vanhoof. 2007. Termi-

nation analysis of logic programs through combination of type-based norms. ACM Transactions on Pro-
gramming Languages and Systems 29, 2 (2007), 10.

Marco Calautti, Georg Gottlob, and Andreas Pieris. 2015. Chase Termination for Guarded Existential Rules.
In Proc. of the 34th ACM Symposium on Principles of Database Systems (PODS). 91–103.

Marco Calautti, Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. 2015a. Logic Program Termination
Analysis Using Atom Sizes. In Proc. of the Twenty-Fourth International Joint Conference on Artificial
Intelligence (IJCAI). 2833–2839.

Marco Calautti, Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. 2015b. Rewriting-based Check of
Chase Termination. In Proc. of the 9th Alberto Mendelzon International Workshop on Foundations of
Data Management.

Marco Calautti, Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. 2016a. Exploiting Equality Generat-
ing Dependencies in Checking Chase Termination. Proc. of the VLDB Endowment 9, 5 (2016), 396–407.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:37

Marco Calautti, Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. 2016b. Using Linear Constraints for
Logic Program Termination Analysis. Theory and Practice of Logic Programming 16, 3 (2016), 353–377.

Marco Calautti, Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. 2015. Checking termination of
bottom-up evaluation of logic programs with function symbols. Theory and Practice of Logic Program-
ming 15, 6 (2015), 854–889.

Marco Calautti, Sergio Greco, and Irina Trubitsyna. 2013. Detecting decidable classes of finitely ground
logic programs with function symbols. In Principles and Practice of Declarative Programming. ACM,
239–250.

Andrea Calı̀, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite Chase: Query Answering under
Expressive Relational Constraints. Journal of Artificial Intelligence Research (JAIR) 48 (2013), 115–
174.

Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola Leone. 2008. Computable Functions
in ASP: Theory and Implementation. In Proc. International Conference on Logic Programming. 407–424.

Luciano Caroprese, Irina Trubitsyna, and Ester Zumpano. 2007. Implementing Prioritized Reasoning in
Logic Programming. In ICEIS 2007 - Proc. Ninth International Conference on Enterprise Information
Systems, Volume AIDSS. 94–100.

Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. 1984. Inclusion Dependencies and Their
Interaction with Functional Dependencies. J. Comput. System Sci. 28, 1 (1984), 29–59.

Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. 2005. Testing for Termination with Monotonicity Con-
straints. In Proc. International Conference on Logic Programming. 326–340.

Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. 2008. The chase revisited. In Proc. of the 27th ACM
Symposium on Principles of database systems (PODS). 149–158.

Alin Deutsch and Val Tannen. 2003. MARS: A System for Publishing XML from Mixed and Redundant
Storage. In Proc. of the International Conference on Very Large Data Bases (VLDB). 201–212.

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data exchange: semantics and
query answering. Theoretical Computer Science 336, 1 (2005), 89–124.

Filippo Furfaro, Gianluigi Greco, and Sergio Greco. 2004. Minimal founded semantics for disjunctive logic
programs and deductive databases. Theory and Practice of Logic Programming 4, 1-2 (2004), 75–93.

Martin Gebser, Torsten Schaub, and Sven Thiele. 2007. GrinGo : A New Grounder for Answer Set Program-
ming. In Proc. International Conference on Logic Programming and Nonmonotonic Reasoning. 266–271.

Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. 1991. The Well-Founded Semantics for General
Logic Programs. J. ACM 38, 3 (1991), 620–650.

Michael Gelfond and Vladimir Lifschitz. 1988. The Stable Model Semantics for Logic Programming. In Proc.
International Joint Conference and Symposium on Logic Programming. 1070–1080.

Michael Gelfond and Vladimir Lifschitz. 1991. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 3/4 (1991), 365–386.

Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Carsten Otto, Martin
Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski, and René Thiemann. 2014.
Proving Termination of Programs Automatically with AProVE. In Proc. of the 7th International Joint
Conference on Automated Reasoning. 184–191.

T. Gogacz and J. Marcinkowski. 2014. All-Instances Termination of Chase is Undecidable. In Proc. Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP). 293–304.

Bernardo Cuenca Grau, Ian Horrocks, Markus Krotzsch, Clemens Kupke, Despoina Magka, Boris Motik,
and Zhe Wang. 2013. Acyclicity Notions for Existential Rules and Their Application to Query Answering
in Ontologies. Journal of Artificial Intelligence Research (JAIR) 47 (2013), 741–808.

Sergio Greco, Cristian Molinaro, and Francesca Spezzano. 2012. Incomplete Data and Data Dependencies in
Relational Databases. Morgan & Claypool Publishers.

Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. 2013a. Checking Logic Program Termination Under
Bottom-Up Evaluation. In Proc. of the International Joint Conference on Artificial Intelligence (IJCAI).

Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. 2013b. Logic Programming with Function Symbols:
Checking Termination of Bottom-up Evaluation Through Program Adornments. Theory and Practice of
Logic Programming 13, 4-5 (2013), 737–752.

Sergio Greco and Francesca Spezzano. 2010. Chase Termination: A Constraints Rewriting Approach. Proc.
of the VLDB Endowment 3, 1 (2010), 93–104.

Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. 2011. Stratification Criteria and Rewriting Tech-
niques for Checking Chase Termination. Proc. of the VLDB Endowment 4, 11 (2011), 1158–1168.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:38 Calautti et al.

Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. 2012. On the Termination of Logic Programs with
Function Symbols. In Proc. of the International Conference on Logic Programming (Technical Commu-
nications). 323–333.

Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. 2015. Checking Chase Termination: Cyclicity Anal-
ysis and Rewriting Techniques. IEEE Transactions on Knowledge Data Engineering 27, 3 (2015), 621–
635.

Sergio Greco, Irina Trubitsyna, and Ester Zumpano. 2007. On the Semantics of Logic Programs with Pref-
erences. Journal of Artificial Intelligence Research (JAIR) 30 (2007), 501–523.

Yuliya Lierler and Vladimir Lifschitz. 2009. One More Decidable Class of Finitely Ground Programs. In
Proc. International Conference on Logic Programming. 489–493.

Massimo Marchiori. 1996. Proving Existential Termination of Normal Logic Programs. In Algebraic Method-
ology and Software Technology. 375–390.

Bruno Marnette. 2009. Generalized schema-mappings: from termination to tractability. In PODS. 13–22.
Arne Meier, Martin Mundhenk, Michael Thomas, and Heribert Vollmer. 2008. The Complexity of Satisfia-

bility for Fragments of CTL and CTL*. Electronic Notes on Theoretical Computer Science 223 (2008),
201–213.

Michael Meier, Michael Schmidt, and Georg Lausen. 2009. On Chase Termination Beyond Stratification.
CoRR abs/0906.4228 (2009).

Manh Thang Nguyen, Jürgen Giesl, Peter Schneider-Kamp, and Danny De Schreye. 2007. Termination
Analysis of Logic Programs Based on Dependency Graphs. In Proc. of the International Symposium on
Logic-based Program Synthesis and Transformation. 8–22.

Manh Thang Nguyen, Danny De Schreye, Jürgen Giesl, and Peter Schneider-Kamp. 2011. Polytool: Polyno-
mial interpretations as a basis for termination analysis of logic programs. Theory and Practice of Logic
Programming 11, 1 (2011), 33–63.

Naoki Nishida and Germán Vidal. 2010. Termination of narrowing via termination of rewriting. Applicable
Algebra in Engineering, Communication and Computing 21, 3 (2010), 177–225.

Enno Ohlebusch. 2001. Termination of Logic Programs: Transformational Methods Revisited. Applicable
Algebra in Engineering, Communication and Computing 12, 1/2 (2001), 73–116.

Adrian Onet. 2013. The Chase Procedure and its Applications in Data Exchange. In Data Exchange, Inte-
gration, and Streams. 1–37.

Peter Schneider-Kamp, Jürgen Giesl, and Manh Thang Nguyen. 2009a. The Dependency Triple Framework
for Termination of Logic Programs. In Proc. International Symposium on Logic-based Program Synthesis
and Transformation. 37–51.

Peter Schneider-Kamp, Jürgen Giesl, Alexander Serebrenik, and René Thiemann. 2009b. Automated ter-
mination proofs for logic programs by term rewriting. ACM Transactions on Computational Logic 11, 1
(2009).

Peter Schneider-Kamp, Jürgen Giesl, Thomas Stroder, Alexander Serebrenik, and René Thiemann. 2010.
Automated termination analysis for logic programs with cut. Theory and Practice of Logic Programming
10, 4-6 (2010), 365–381.

Danny De Schreye and Stefaan Decorte. 1994. Termination of Logic Programs: The Never-Ending Story.
Journal of Logic Programming 19/20 (1994), 199–260.

Alexander Serebrenik and Danny De Schreye. 2005. On termination of meta-programs. Theory and Practice
of Logic Programming 5, 3 (2005), 355–390.

A. Prasad Sistla and Edmund M. Clarke. 1985. The Complexity of Propositional Linear Temporal Logics. J.
ACM 32, 3 (1985), 733–749.

Tran Cao Son, Enrico Pontelli, and Phan Huy Tu. 2007. Answer Sets for Logic Programs with Arbitrary
Abstract Constraint Atoms. Journal of Artificial Intelligence Research (JAIR) 29 (2007), 353–389.

Tommi Syrjanen. 2001. Omega-Restricted Logic Programs. In Proc. of the International Conference on Logic
Programming and Nonmonotonic Reasoning. 267–279.

Dean Voets and Danny De Schreye. 2011. Non-termination analysis of logic programs with integer arith-
metics. Theory and Practice of Logic Programming 11, 4-5 (2011), 521–536.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:39

A. TEMPORAL LOGICS
A.1. Linear temporal logic
Linear Temporal Logic (LTL) is an extension of propositional logic with the notion of
time. In particular, in LTL we assume to have a countably infinite set Prop of proposi-
tions, the set of standard logic connectives ¬,∧,∨,⇒, and a set of temporal operators.
Well-formed LTL formulae are either propositions of Prop or, if ϕ and ξ are well-formed
LTL formulae, then ¬ϕ, ϕ ∨ ξ, ϕ ∧ ξ, ϕ ⇒ ξ, G.ϕ, F.ϕ and N.ϕ, are well-formed LTL
formulae. The operators G, F and N are the LTL temporal operators denoting the
following:

—G.ϕ: formula ϕ always holds;
— F.ϕ: formula ϕ holds sometime in the future;
—N.ϕ: formula ϕ holds at the next instant.

The semantics of LTL is defined in terms of linear-time structures. A linear-time
structure is a pair K = (S, ψ), where S = s0, s1, . . . is a possibly infinite sequence of
states (i.e., time instants) and ψ : {s0, s1, . . .} → 2Prop is a function mapping each state
to a set of propositions, i.e., it tells us what propositions are true at a given state.

Given a linear-time structure K = (S, ψ) where S = s0, . . ., a state si in S and LTL
formulae ϕ,ξ, the satisfiability relation |= is inductively defined as follows:

—K, si |= p iff p ∈ ψ(si), where p ∈ Prop;
—K, si |= ¬ϕ iff K, si 6|= ϕ;
—K, si |= φ ∧ ξ iff K, si |= ϕ and K, si |= ξ;
—K, si |= ϕ ∨ ξ iff K, si |= ϕ or K, si |= ξ;
—K, si |= ϕ⇒ ξ iff K, si |= ¬φ or K, si |= ξ;
—K, si |= N.ϕ iff K, si+1 |= ϕ;
—K, si |= G.ϕ iff for every j ≥ i, K, sj |= ϕ;
—K, si |= F.ϕ iff ∃j ≥ i such that K, sj |= ϕ

We say that an LTL formula ϕ is satisfiable if there exists a linear-time structure
K = (S, ψ), with S = s0, s1, . . ., such that K, s0 |= ϕ.

The problem of checking whether an LTL formula is satisfiable is PSPACE−complete
[Meier et al. 2008].

A.2. Computation tree logic
Computation Tree Logic (CTL) is another extension of propositional logic with the no-
tion of time, where the underlying models might encode multiple execution paths,
rather than only one. Formally, given an infinite set Prop of propositions and logic
connectives as shown for LTL, well-formed CTL formulae are either propositions of
Prop or if ϕ and ψ are well-formed CTL formulae, then ¬ϕ, ϕ ∨ ξ, ϕ ∧ ξ, ϕ ⇒ ξ, AG.ϕ,
AF.ϕ, AN.ϕ, EG.ϕ, EF.ϕ and EN.ϕ are well-formed CTL formulae. We consider the
CTL temporal operators AG, AF , AN , EG, EF and EN intuitively denoting the fol-
lowing:

—AG.φ: in all execution paths, formula φ always holds;
—AF.φ: in all execution paths, formula φ holds sometime in the future;
—AN.φ: in all execution paths, formula φ holds at the next instant;
—EG.φ: there exists an execution path such that, formula φ always holds;
—EF.φ: there exists an execution path such that, formula φ holds sometime in the

future;
—EN.φ: there exists an execution path such that, formula φ holds at the next instant.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:40 Calautti et al.

Models of CTL formulae denote multiple execution paths, encoded as all possi-
ble paths over a given transition system. A transition system is a quadruple T =
(S, s0, R, ψ), where S is a set of states, s0 ∈ S is the initial state and R ⊆ S × S is
a serial transition relation, i.e., for every state s ∈ S, there is a state s′ ∈ S such that
sRs′. Finally, ψ : S → 2Prop is a function mapping every state to a set of propositions. A
path in a transition system T is an infinite sequence π = π1, π2, . . . , of states such that
xiRxi+1 for all i > 0. Intuitively, the set S of states and the relation R of T together
define a graph, where each state s is a node and edges are defined by R. A path in T
simply denotes a path in the corresponding graph. Thus, transition systems can also be
seen as a tree-like structure, rooted in s0, obtained by the unwinding of the aforemen-
tioned graph. We denote such a tree with Tree(T). Every path in Tree(T) corresponds
to a path in T .

Given a transition system T = (S, s0, R, ψ), a state s in S and CTL formulae ϕ and ξ,
the satisfiability relation |= is inductively defined as follows:

— T, s |= p iff p ∈ ψ(s), where p ∈ Prop;
— T, s |= ¬ϕ iff T, s 6|= ϕ;
— T, s |= φ ∧ ξ iff T, s |= ϕ and T, s |= ξ;
— T, s |= ϕ ∨ ξ iff T, s |= ϕ or T, s |= ξ;
— T, s |= ϕ⇒ ξ iff T, s |= ¬φ or T, s |= ξ;
— T, s |= AG.ϕ iff for all paths π = π1, π2, . . . with π1 = s, holds T, πi |= ϕ, for all i > 0;
— T, s |= AF.ϕ iff for all paths π = π1, π2, . . . with π1 = s, holds T, πi |= ϕ, for some i > 0;
— T, s |= AN.ϕ iff for all paths π = π1, π2, . . . with π1 = s, holds T, π2 |= ϕ;
— T, s |= EG.ϕ iff there exists a path π = π1, π2, . . . with π1 = s, holds T, πi |= ϕ, for all i > 0;
— T, s |= EF.ϕ iff there exists a path π = π1, π2, . . . with π1 = s, holds T, πi |= ϕ, for some i > 0;
— T, s |= EN.ϕ iff there exists a path π = π1, π2, . . . with π1 = s, holds T, π2 |= ϕ.

We say that a CTL formula ϕ is satisfiable if there exists a transition system T =
(S, s0, R, ψ) such that T, s0 |= ϕ.

The problem of checking satisfiability of a CTL formula is EXPTIME−complete even
when we restrict to only three of the presented operators [Meier et al. 2008].

B. EM-RESTRICTED PROGRAMS: ALTERNATIVE DEFINITIONS AND EXAMPLES
Given a simple term (i.e., a constant or a variable) occurrence uj in a term t, we denote
by str(t, uj) the string of function symbols used to reach uj and defined as follows:

— str(t, uj) = ε if t = u
— str(t, uj) = fi · s if t = f(vi, . . . , vn) and uj occurs in vi and str(vi, uj) = s.

Let P be a program, an extended mapping set (em-set) VP for P is a set of pairs p[i]/s
such that p[i] ∈ arg(P) and s ∈ FN∗P , where FNP denotes the alphabet consisting of
symbols of the form fj such that f occurs in P and j ∈ [1, ar(f)] ∩N .

Let VP be an em-set of P, A = p(t1, . . . , tn) an atom occurring in P and ti the term
containing an occurrence Xj of a variable X, we say that Xj occurring in A is mapped
to s ∈ FN∗P w.r.t. a em-set VP , and denote by 〈VP , A,Xj〉; s if p[i]/str(ti, Xj) · s ∈ VP .

Definition B.1 (Supported em-set). Let P be a program and let VP be an em-set of
P. We say that VP is supported if:

(1) p[i]/ε ∈ VP for every argument p[i] ∈ argb(P), and
(2) for every rule r ∈ P and every simple term t in head(r), if for every atomB ∈ body(r)

and for every occurrence of a constant cj in B the mapping 〈VP , B, cj〉 ; ε holds,
then:
— 〈VP , head(r), t〉; ε holds if t is a constant;

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:41

— 〈VP , head(r), t〉 ; s holds if t is a variable and s is a string such that for
every body atom B of r and every occurrence of a term tj in B the mapping
〈VP , B, tj〉; s holds. 2

The minimum supported em-set of P is denoted by V∗P .

Definition B.2. Let P be a program and let V∗P the minimum supported em-set of
P. We say that an argument p[i] of P is em-restricted iff the set {p[i]/s | p[i]/s ∈ V∗P} is
finite. Finally, P is em-restricted if all its arguments are em-restricted. 2

B.1. Example 6.15
Consider the program of Example 6.15

r1 : merge([a, b], [c, d, e], []).
r2 : merge(L1, L2, [X|[Y|L3]]) ← merge([X|L1], [Y|L2], L3).
r3 : merge([], L2, [Y|L3]) ← merge([], [Y|L2], L3).
r4 : merge(L1, [], [X|L3]) ← merge([X|L1], [], L3).

By denoting the binary list constructor operator with cons and the empty list with the
constant null we can rewrite into the below set of rules P:

r1 : merge(cons(a, cons(b, null)), cons(c, cons(d, cons(e, null))), null).
r2 : merge(L1, L2, cons(X, cons(Y, L3)))← merge(cons(X, L1), cons(Y, L2), L3).
r3 : merge(null, L2, cons(Y, L3)) ← merge(null, cons(Y, L2), L3).
r4 : merge(L1, null, cons(X, L3)) ← merge(cons(X, L1), null, L3).

The derived unary program Pυ is as follows:

ρ1.1 merge1(cons1(ε)).
ρ1.2 merge1(cons2(cons1(ε))).
ρ1.3 merge1(cons2(cons2(ε))).
ρ1.4 merge2(cons1(ε)).
ρ1.5 merge2(cons2(cons1(ε))).
ρ1.6 merge2(cons2(cons2(cons1(ε)))).
ρ1.7 merge2(cons2(cons2(cons2(ε)))).
ρ1.8 merge3(ε).

ρ2.1 merge1(L1) ← merge1(cons2(L1)).
ρ2.2 merge2(L2) ← merge2(cons2(L2)).
ρ2.3 merge3(cons1(X)) ← merge1(cons1(X)).
ρ2.4 merge3(cons2(cons1(Y))) ← merge2(cons1(Y)).
ρ2.5 merge3(cons2(cons2(L3))) ← merge3(L3).

ρ3.1 merge2(L2) ← merge2(cons2(L2)), merge1(ε).
ρ3.2 merge3(cons1(Y)) ← merge2(cons1(Y)), merge1(ε).
ρ3.3 merge3(cons2(L3)) ← merge3(L3), merge1(ε).

ρ4.1 merge1(L1) ← merge1(cons2(L1)), merge2(ε).
ρ4.2 merge3(cons1(X)) ← merge1(cons1(X)), merge2(ε).
ρ4.3 merge3(cons2(L3)) ← merge3(L3), merge2(ε).

where each rule ρi.j is derived from rule ri. 2

C. RULES REWRITING
In this appendix, we formally present how rules can be rewritten so that constants
do not appear inside rules and the maximum level of nesting of terms is one. More
specifically, for every rule r, first each constant c occurring in r is replaced with a fresh

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:42 Calautti et al.

variable Xc and an atom bc(Xc) is added to the body of r, where bc is a new base pred-
icate symbol6. Then, r is rewritten into a set of rules Flat(r) such that the maximum
depth of each term is 1. For every program P, Flat(P) = ∪r∈PFlat(r) denotes the set
of rewritten rules derived from rules in P.

In the algorithm below, we shall use substitutions consisting of pairs variable/term
to remember the (fresh) variables used to replace (complex) terms. The application of a
substitution θ = {U1/u1, . . . , Uk/uk} to an atom A, denoted as Aθ, is the atom obtained
from A by replacing each variable Ui with the term ui, for 1 ≤ i ≤ k.

We start by presenting the function FlattenAtoms, getting as input a set of atoms
and returning a set of atoms and a substitution. In particular, this function returns a
set of atoms obtained from the input one by replacing complex terms at the second level
with fresh variables. A substitution mapping each new variable to the corresponding
complex term is returned as well.

For example, given the set of atoms S = {p(f(f(X)), g(X, g(f(Y), Z)))}, the out-
put would be the set F = {p(f(A), g(X,B))} and the substitution θ = {A/f(X),
B/g(f(Y), Z)}.

Function FlattenAtoms;
input: A set of atoms S;
output: A set of flattened atoms F and a substitution θ;
begin

F := S;
θ := ∅;
for each atom p(t1, . . . , tn) ∈ S and each ti = f(u1, . . . , uk) with dept(ti) > 1 do

replace each complex term uj with a fresh variable Uj in F ;
add Uj/uj to θ for each complex term uj ;

end
return (F, θ);

end.

We are now ready to present the rule rewriting algorithm. In essence, given a rule,
the following algorithm first makes the rule constant-free and then flattens, one level
at the time, all atoms occurring in the head and the body.

6The equivalence between the rewritten program and the source program can be guaranteed by adding to
the database a fact bc(c).

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Detecting decidable classes of finitely ground logic programs with function symbols 39:43

Algorithm Rule rewriting;
input: A rule r;
output: A set of rules Flat(r);
begin

// Constants removal
Let bc be a new base predicate symbol, for each constant c;
add the atom bc(Xc) to body(r), for each constant c occuring in r;
replace all occurrences of a constant c in r with a new variable Xc;

Flat(r) := {r};
// head flattening
while ∃r′ ∈ Flat(r) with dept(head(r′)) > 1 do

Let (F, θ) = FlattenAtoms(head(r′));
Let X1, . . . , Xm be the variables occurring in F ;
Let C = p′(X1, . . . , Xm) be an atom with a fresh predicate symbol p′;
replace r′ with the rules F ← C and Cθ ← body(r′) in Flat(r);

end
// body flattening
while ∃r′ ∈ Flat(r) with dept(body(r′)) > 1 do

Let (F, θ) = FlattenAtoms(body(r′));
Let X1, . . . , Xm be the variables occurring in F ;
Let C = p′(X1, . . . , Xm) be an atom with a fresh predicate symbol p′;
replace r′ with the rules C ← F and head(r′)← Cθ in Flat(r);

end
return Flat(r);

end.

Example C.1. Consider the following rule:

r : p(f1(f2(X, Y)), f2(f2(f1(X), Y), Z), c)← q(f1(f1(X)), f2(f2(f1(Z), Y), X)).

Step 0: All constants are removed from r, obtaining the rule:

r : p(f1(f2(X, Y)), f2(f2(f1(X), Y), Z), Xc)← q(f1(f1(X)), f2(f2(f1(Z), Y), X)), bc(Xc).

Step 1: Flat(r) contains the rule:

r : p(f1(f2(X, Y)), f2(f2(f1(X), Y), Z), Xc)← q(f1(f1(X)), f2(f2(f1(Z), Y), X)), bc(Xc).

First phase (head flattening).
Step 2: Selecting r we have that θ = {A/f2(X, Y), B/f2(f1(X), Y)}. In Flat(r), rule r is
replaced by the rules:

r1 : p(f1(A), f2(B, Z), Xc)← p1(A, B, Z, Xc).
r2 : p1(f2(X, Y), f2(f1(X), Y), Z, Xc)← q(f1(f1(X)), f2(f2(f1(Z), Y), X)), bc(Xc).

Step 3: Selecting r2 we have that θ = {C/f1(X)}. In Flat(r), rule r2 is replaced by the
rules:

r3 : p1(f2(X, Y), f2(C, Y), Z, Xc)← p2(X, Y, C, Z, Xc).
r4 : p2(X, Y, f1(X), Z, Xc)← q(f1(f1(X)), f2(f2(f1(Z), Y), X)), bc(Xc).

Second phase (body flattening).
Step 4: Selecting r4 we have that θ = {D/f1(X), E/f2(f1(Z), Y)}. In Flat(r), rule r4 is

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:44 Calautti et al.

replaced by the rules:

r5 : q1(D, E, X, Xc)← q(f1(D), f2(E, X)), bc(Xc).
r6 : p2(X, Y, f1(X), Z, Xc)← q1(f1(X), f2(f1(Z), Y), X, Xc).

Step 5: Selecting r6 we have that θ = {F/f1(Z)}. In Flat(r), rule r6 is replaced by the
rules:

r7 : q2(X, F, Y, Xc)← q1(f1(X), f2(F, Y), X, Xc).
r8 : p2(X, Y, f1(X), Z, Xc)← q2(X, f1(Z), Y, Xc).

The final set of rules Flat(r) is as follows:

r1 : p(f1(A), f2(B, Z), Xc)← p1(A, B, Z, Xc).
r3 : p1(f2(X, Y), f2(C, Y), Z, Xc)← p2(X, Y, C, Z, Xc).
r8 : p2(X, Y, f1(X), Z, Xc)← q2(X, f1(Z), Y, Xc).
r7 : q2(X, F, Y, Xc)← q1(f1(X), f2(F, Y), X, Xc).
r5 : q1(D, E, X, Xc)← q(f1(D), f2(E, X)), bc(Xc).

2

It is worth noting that, at each step, Flat(r) contains only one rule which may need
to be rewritten. Furthermore, the number of steps needed to flatten a rule r is equal to
max{0, dept(head(r))− 1}+ max{0, dept(body(r))− 1}.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

