14,051 research outputs found

    A generalization of the cumulant expansion. Application to a scale-invariant probabilistic model

    Full text link
    As well known, cumulant expansion is an alternative way to moment expansion to fully characterize probability distributions provided all the moments exist. If this is not the case, the so called escort mean values (or q-moments) have been proposed to characterize probability densities with divergent moments [C. Tsallis et al, J. Math. Phys 50, 043303 (2009)]. We introduce here a new mathematical object, namely the q-cumulants, which, in analogy to the cumulants, provide an alternative characterization to that of the q-moments for the probability densities. We illustrate this new scheme on a recently proposed family of scale-invariant discrete probabilistic models [A. Rodriguez et al, J. Stat. Mech. (2008) P09006; R. Hanel et al, Eur. Phys. J. B 72, 263268 (2009)] having q-Gaussians as limiting probability distributions

    Geometry of River Networks II: Distributions of Component Size and Number

    Get PDF
    The structure of a river network may be seen as a discrete set of nested sub-networks built out of individual stream segments. These network components are assigned an integral stream order via a hierarchical and discrete ordering method. Exponential relationships, known as Horton's laws, between stream order and ensemble-averaged quantities pertaining to network components are observed. We extend these observations to incorporate fluctuations and all higher moments by developing functional relationships between distributions. The relationships determined are drawn from a combination of theoretical analysis, analysis of real river networks including the Mississippi, Amazon and Nile, and numerical simulations on a model of directed, random networks. Underlying distributions of stream segment lengths are identified as exponential. Combinations of these distributions form single-humped distributions with exponential tails, the sums of which are in turn shown to give power law distributions of stream lengths. Distributions of basin area and stream segment frequency are also addressed. The calculations identify a single length-scale as a measure of size fluctuations in network components. This article is the second in a series of three addressing the geometry of river networks.Comment: 16 pages, 13 figures, 4 tables, Revtex4, submitted to PR

    Poisson approximation of the length spectrum of random surfaces

    Get PDF
    Multivariate Poisson approximation of the length spectrum of random surfaces is studied by means of the Chen-Stein method. This approach delivers simple and explicit error bounds in Poisson limit theorems. They are used to prove that Poisson approximation applies to curves of length up to order o(log⁥log⁥g)o(\log\log g) with gg being the genus of the surface.Comment: 22 pages, 2 figures. To appear in Indiana Univ. Math.

    Poisson approximation of the length spectrum of random surfaces

    No full text

    Alpha, Betti and the Megaparsec Universe: on the Topology of the Cosmic Web

    Full text link
    We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α\alpha. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α\alpha, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution and scale-dependence of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web and yields a promising measure of cosmological parameters. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field.Comment: 42 pages, 14 figure

    A glimpse of the conformal structure of random planar maps

    Full text link
    We present a way to study the conformal structure of random planar maps. The main idea is to explore the map along an SLE (Schramm--Loewner evolution) process of parameter Îș=6 \kappa = 6 and to combine the locality property of the SLE_{6} together with the spatial Markov property of the underlying lattice in order to get a non-trivial geometric information. We follow this path in the case of the conformal structure of random triangulations with a boundary. Under a reasonable assumption called (*) that we have unfortunately not been able to verify, we prove that the limit of uniformized random planar triangulations has a fractal boundary measure of Hausdorff dimension 13\frac{1}{3} almost surely. This agrees with the physics KPZ predictions and represents a first step towards a rigorous understanding of the links between random planar maps and the Gaussian free field (GFF).Comment: To appear in Commun. Math. Phy

    Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Get PDF
    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsi- cally generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynami- cal regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations, for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons
    • 

    corecore