2,471 research outputs found

    Lower bounds for Arrangement-based Range-Free Localization in Sensor Networks

    Full text link
    Colander are location aware entities that collaborate to determine approximate location of mobile or static objects when beacons from an object are received by all colanders that are within its distance RR. This model, referred to as arrangement-based localization, does not require distance estimation between entities, which has been shown to be highly erroneous in practice. Colander are applicable in localization in sensor networks and tracking of mobile objects. A set S⊂R2S \subset {\mathbb R}^2 is an (R,ϵ)(R,\epsilon)-colander if by placing receivers at the points of SS, a wireless device with transmission radius RR can be localized to within a circle of radius ϵ\epsilon. We present tight upper and lower bounds on the size of (R,ϵ)(R,\epsilon)-colanders. We measure the expected size of colanders that will form (R,ϵ)(R, \epsilon)-colanders if they distributed uniformly over the plane

    Connectivity-Based Self-Localization in WSNs

    Get PDF
    Efficient localization methods are among the major challenges in wireless sensor networks today. In this paper, we present our so-called connectivity based approach i.e, based on local connectivity information, to tackle this problem. At first the method fragments the network into larger groups labeled as packs. Based on the mutual connectivity relations with their surrounding packs, we identify border nodes as well as the central node. As this first approach requires some a-priori knowledge on the network topology, we also present a novel segment-based fragmentation method to estimate the central pack of the network as well as detecting so-called corner packs without any a-priori knowledge. Based on these detected points, the network is fragmented into a set of even larger elements, so-called segments built on top of the packs, supporting even more localization information as they all reach the central node

    Distributed Detection and Estimation in Wireless Sensor Networks

    Full text link
    In this article we consider the problems of distributed detection and estimation in wireless sensor networks. In the first part, we provide a general framework aimed to show how an efficient design of a sensor network requires a joint organization of in-network processing and communication. Then, we recall the basic features of consensus algorithm, which is a basic tool to reach globally optimal decisions through a distributed approach. The main part of the paper starts addressing the distributed estimation problem. We show first an entirely decentralized approach, where observations and estimations are performed without the intervention of a fusion center. Then, we consider the case where the estimation is performed at a fusion center, showing how to allocate quantization bits and transmit powers in the links between the nodes and the fusion center, in order to accommodate the requirement on the maximum estimation variance, under a constraint on the global transmit power. We extend the approach to the detection problem. Also in this case, we consider the distributed approach, where every node can achieve a globally optimal decision, and the case where the decision is taken at a central node. In the latter case, we show how to allocate coding bits and transmit power in order to maximize the detection probability, under constraints on the false alarm rate and the global transmit power. Then, we generalize consensus algorithms illustrating a distributed procedure that converges to the projection of the observation vector onto a signal subspace. We then address the issue of energy consumption in sensor networks, thus showing how to optimize the network topology in order to minimize the energy necessary to achieve a global consensus. Finally, we address the problem of matching the topology of the network to the graph describing the statistical dependencies among the observed variables.Comment: 92 pages, 24 figures. To appear in E-Reference Signal Processing, R. Chellapa and S. Theodoridis, Eds., Elsevier, 201
    • …
    corecore