581 research outputs found

    The 3D model control of image processing

    Get PDF
    Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator

    Robust visual servoing in 3d reaching tasks

    Get PDF
    This paper describes a novel approach to the problem of reaching an object in space under visual guidance. The approach is characterized by a great robustness to calibration errors, such that virtually no calibration is required. Servoing is based on binocular vision: a continuous measure of the end-effector motion field, derived from real-time computation of the binocular optical flow over the stereo images, is compared with the actual position of the target and the relative error in the end-effector trajectory is continuously corrected. The paper outlines the general framework of the approach, shows how visual measures are obtained and discusses the synthesis of the controller along with its stability analysis. Real-time experiments are presented to show the applicability of the approach in real 3-D applications

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed

    An implementation of a versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses

    Get PDF
    This thesis studies and implements a new versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses developed by Roger Tsai [1]. This technique builds up a unique relationship from the world coordinate system to the computer image coordinate system of calibration points by using a radial alignment constraint. The technique has advantage in terms of accuracy, speed, and versatility over existing techniques. The fundamental knowledge for using this technique is presented in this thesis first, followed by an overview of the existing calibration techniques, and a detailed description of the new technique. The implementation is then presented step by step and is algorithm-oriented. Finally, the experimental results using real data are reported. A precise calibration pattern, a CCD camera with zoom lens and a DADACUBE image acquisition system are used for the implementation of the calibration technique. This thesis supplies the calibrated parameters for researchers who will use the CCD camera in their research, and may pave the way for future research in camera calibration
    corecore