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ABSTRACT  

An Implementation of a Versatile Camera Calibration Technique for High-Accuracy 
3D Machine Vision Metrology Using Off-The-Shelf TV Camera and Lenses 

by 

Bolang Li 

This thesis studies and implements a new versatile camera calibration technique for 

high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses 

developed by Roger Tsai [1]. This technique builds up a unique relationship from the world 

coordinate system to the computer image coordinate system of calibration points by using 

a radial alignment constraint. The technique has advantage in terms of accuracy, speed, and 

versatility over existing techniques. 

The fundamental knowledge for using this technique is presented in this thesis first, 

followed by an overview of the existing calibration techniques, and a detailed description 

of the new technique. The implementation is then presented step by step and is algorithm-

oriented. Finally, the experimental results using real data are reported. 

A precise calibration pattern, a CCD camera with zoom lens and a DADACUBE 

image acquisition system are used for the implementation of the calibration technique. 

This thesis supplies the calibrated parameters for researchers who will use the CCD 

camera in their research, and may pave the way for future research in camera calibration.  
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CHAPTER 1 

INTRODUCTION 

As the beginning part of the thesis, this chapter introduces the basic concept of 

camera calibration techniques for 3D machine vision metrology. The important criteria for 

evaluating a camera calibration technique and the fundamental knowledge for realizing a 

camera calibration technique are presented. 

1.1 The Role of Camera Calibration 

High-accuracy measurement of 3D position is an important machine vision task in 

applications such as automation, robotics and automatic vehicle guidance. In this kind of 

measurement, parameters of TV cameras' internal geometrical and optical characteristics 

must be calibrated first so that the accurate measurement can be conducted. 

Camera calibration in the context of 3D machine vision is the process of 

determining the internal camera geometric and optical characteristics (intrinsic parameters) 

and/or the 3D position and orientation of the camera frame relative to a certain world 

coordinate system (extrinsic parameters) for the following purposes. 

1) Inferring 3D information from computer image coordinates. There are two kinds 

of 3D information to be inferred. They are different mainly because of the difference in 

applications. 

a) The first kind of 3D information concerns the locations of objects, targets, or 

features. For simplicity, if the object is a point feature (e.g. a point spot in a mechanical part 

illuminated by a laser beam, or the corner of a electrical component on a printed circuit 

board), camera calibration provides a way of determining a ray in 3D space that the object 

point must lie on, given the computer image coordinates. With two views either taken from 

two cameras or one camera in two locations, the position of the object point can be 

determined by intersecting the two rays (see Figure 1-1). 

1 
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Figure 1-1  Three dimensional localization from two cameras 

Both intrinsic and extrinsic parameters need to be calibrated. The applications 

include mechanical part dimensional measurement, automatic assembly of mechanical or 

electronics components, tracking, robot calibration and trajectory analysis. In the above 

applications, the camera calibration need to be done only once. 

b) The second kind concerns the position and the orientation of moving camera 

(e.g., a camera held by a robot) relative to the target world coordinate system. The 

applications include robot calibration with camera-on-robot configuration and robot 

vehicle guidance. 

2) Inferring 2D computer image coordinates from 3D information. In model-driven 

inspection or assembly applications using machine vision, a hypothesis of the state of the 

world can be verified or confirmed by observing whether the image coordinates of the 

object confirm to the hypothesis. In doing so, it is necessary to have both the intrinsic and 
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extrinsic camera model parameters calibrated so that the two-dimensional (2D) image 

coordinate can be properly predicted given the hypothetical 3D location of the object. 

1.2 Important Criteria for Camera Calibration 

The following criteria for camera calibration are important for serving the purposes 

stated in the previous section. 

1) Autonomous: This means that the calibration procedure should not require 

operator intervention such as giving initial guesses for certain parameters. or choosing 

certain system parameters manually. 

2) Accurate: Many applications such as mechanical part inspection, assembly, or 

robot arm calibration require an accuracy that is less than one hundred percent of the 

working range. Therefore camera calibration technique should have the potential of 

meeting such accuracy requirements. This requires that the theoretical modeling of the 

imaging process must be accurate and thus implies that the camera calibration should 

include lens distortion and perspective rather than parallel projection. 

3) Reasonably efficient: Although the calibration needs not operate in real time, the 

complete camera calibration procedure should not include high dimension (more than five) 

nonlinear search (this takes a long time to do). Since type b) application mentioned in 

section 1.1 needs repeated calibration of extrinsic parameters, the calibration approach 

should allow enough potential for high-speed implementation. 

4) Versatile: This means that the calibration technique should operate uniformly 

and autonomously for a wide range of accuracy requirements, optical setups, and 

applications. 

5) Usage of common off-the-shelf camera and lens only: Most camera calibration 

techniques developed in the photogrammetric area require special professional cameras 

and processing equipment. Such requirements prohibit full automation and are labor- 



4  

intensive and time-consuming to implement. The advantages of using off-the-shelf solid 

state or vidicon camera and lens are as follows: 

* versatile: this is because solid state cameras and lenses can be used for a variety 

of automation applications; 

* availability: since off-the-shelf solid state cameras and lenses are common in 

many applications, they are at hand when you need them and need not be custom ordered; 

* familiarity, user-friendly: because that not many people have the experience of 

operating professional metric cameras used in photogrammetry or the tetralateral 

photodiode with preamplifier and associated electronics calibration, it is convenient to use 

solid state type camera which is easy to interface with a computer and easy to install. 

The purposes mentioned in section 1.1 can be best served if the above criteria for 

the camera calibration are met. 

Among existing camera calibration techniques, a technique called two stage 

calibration technique introduced by Roger Tsai [1] is the best one according to how well it 

meet the criteria stated above. An overview of existing camera calibration technique and a 

description of the calibration technique introduced by Roger Tsai will be seen in chapter 2. 

This thesis researches work studies and implements this technique. 

1.3 Camera Parameters and Transformation  

In this section, camera parameters and some basic transformations that will be used 

in the thesis are defined. Both are the fundamental knowledge for camera calibration. 

1.3.1 Camera Parameters  

1) Effective focal length 

The effective focal length denoted by f, is defined as the distance between front 

image plane of a CCD camera and the optical center. For thin lens, the effective focal length 
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is fixed. It can be changed in zoom lens. 

2) One-pixel width 

One-pixel width on image plane denoted by dx  is the center to center distance 

between two adjacent sensor elements in the X (scan line) direction. 

3) One-pixel height 

One-pixel height on image plane denoted by dy  is the center to center distance 

between two adjacent CCD sensor elements in the Y direction. 

4) Distortion coefficient and uncertainty scale factor 

Distortion coefficient is denoted by k and uncertainty scale factor for image X coordinate 

is denoted by S. These are introduced due to a variety of factors, such as lens distortion, 

slight hardware timing mismatch between image acquisition hardware and camera 

scanning hardware, or imprecision of timing of TV scanning itself. Note that if a vidicon 

type camera is used, the sensor element or pixel mentioned earlier should be regarded as 

each individual resolution element in the receptor area with the resolution being determined 

by the sampling rate of computer scanning system. If a solid-state CCD or CID discrete 

array sensor is used and if full resolution is used, since the image is scanned line by line, 

the distance between adjacent pixels in Y direction is just the same as dy, the center to 

center distance between two adjacent CCD sensor elements in y direction. Therefore, the 

uncertainty scale factor on image Y coordinate needs not be considered. The situation in X 

is different. The uncertainty scale factor for X coordinate Sx  needs to be and can be 

calculated approximately by using the equation Sx  = fc  /fs, where fc  is the sample frequency 

of the CCD camera, and fs  is the sample frequency of the A/D converter in acquisition 

hardware. 

1.3.2 Transformation 

The following paragraphs review the basic transformations which will be used to 

build up the relation between the world coordinate system and the computer image  



(1-2)  
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coordinate system. 

Translation 

To translate a point with coordinates (X,Y,Z) to a new location (Xt, Yt, Zt) by using 

displacements (X0, Y0, Z0) is accomplished by using the equations: 

X t  = X + X0  

Yt = Y + Y0 	(1-1a) 

Zt  = Z + Z0  

or may be expressed in matrix form by writing  

Scaling 

Scaling by factors Sx, Sy, and Sz  along the X-,Y-, and Z- axes is given by the 

transformation matrix  

Rotation 

To rotate a point about another arbitrary point in space requires three 

transformations: the first translates the arbitrary point to the origin, the second performs the 

rotation, and the third translates the point back to its original position.  



(1-3b) 
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Figure1-2  Rotation about X-, Y-, Z-coordinate axes 

With reference to Figure1-1, the rotation about the X coordinate axis by an angle α  

is achieved by using the transformation 

The rotation angle a is measured clockwise when looking at the origin from a point 

on the + X axis. This transformation affects only the values of Y and Z coordinates. 

Similarly, the rotation of a point about the Y axis by an angle β is performed by 

using the transformation 

The rotation of a point about Z axis by an angle θ  is achieved by using the 

transformation 
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(1-3c) 



CHAPTER 2 

CAMERA CALIBRATION TECHNIQUE 

In this chapter, an overview of existing camera calibration technique is presented, 

followed by a description of the calibration technique that will be used in this thesis. 

2.1 Overview of Existing Camera Calibration Techniques 

There exist several camera calibration techniques which could be classified into 

four categories. The following paragraphs will discuss the strength and weakness of each 

category. 

Category I  --- Techniques involving full-scale nonlinear optimization: see [2] for 

example. 

Advantage: It allows easy adoption of any arbitrarily accurate yet complex model 

for imaging. The best accuracy obtained in this category is comparable to the accuracy of 

the technique proposed by Roger Tsai [1] that is used in this thesis. 

Problems:  1) It requires a good initial guess to start the nonlinear search. 2) It needs 

computer-intensive full-scale nonlinear search. 

Following are some representative approaches for this kind of techniques. 

* Classical approach: Faig's technique [3] uses a very elaborate model for imaging, 

uses at least 17 unknowns for each photo, and is very computer-intensive [3]. However, 

because of the large number of the unknowns, the accuracy is excellent. The root mean 

square (rms) error can be as good as 0.1 mil (1 inch = 103  mils). But this rms error is in 

photo scale, i.e., the error of fitting the model with the observations in image plane. When 

transformed into 3D error (i.e., error in 3D world coordinate system), it is comparable to 

the average error (0.5 mil) obtained by using monoview multiplane calibration technique, 

which is a typical case among various two-stage techniques. Another reason why such 

9 
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photogrammetric techniques produce very accurate results is that large professional format 

photo is used rather than solid-state image array such as CCD. The resolution for such 

photos is generally three to four times better than that for the solid-state imaging sensor 

array. 

* Direct linear transformation (DLT): Another example is the DLT technique 

developed by Abdel-Aziz [4]. One advantage of the DLT is that only linear equations need 

to be solved. However, it was later found by Karara [5], the co-inventor of the DLT, that 

unless lens distortion is ignored, full-scale nonlinear search is needed. Although Wong [6] 

mentioned that there are two possible procedures of using DLT (one entails solving linear 

equations only, and the other requires nonlinear search), the procedure using linear 

equation solving actually contains approximation. One of the artificial parameters he 

introduced, k1, is a function of (x, y, z), the world coordinate and therefore not a constant. 

Nevertheless. the DLT bridges the gap between photogrammetry and computer vision so 

that both areas can use the DLT directly to solve camera calibration problem. 

Sobel [7] described a system for calibrating a camera using nonlinear equation 

solution. Eighteen parameters must be optimized. The approach is similar to Faig's method 

described earlier. No accuracy results were reported. Gennery [8] described a method that 

finds camera parameters iteratively by minimizing the error of epipolar constraints without 

using 3D coordinates of calibration points. It is mentioned in [9] that the technique is too 

error-prone. 

Category II  --- Techniques involving computing perspective transformation matrix 

first using linear equation solution: see [10] for example. 

Advantage: No nonlinear optimization is needed. 

Problems: 1) Lens distortion can not be considered. 2) The number of unknowns in 

linear equations is much larger than the actual number of equations (e.g., the unknowns to 

be solved are not linearly independent). The disadvantage of such redundant 

parameterization is that erroneous combination of these parameters can still make a good 
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fit between experimental observations and model prediction in real situation when the 

observation is not perfect. This means the accuracy potential is limited in noisy situation. 

Following are some representative approaches for this kind of techniques. 

* Sutheriand [11] formulated very explicitly the procedure for computing the 

perspective transformation matrix given 3D world coordinates and 2D image coordinates 

of a number of points. It was applied to graphics applications, and no accuracy results are 

reported. 

* Hall et al. [10] used a straightforward linear least square technique to solve for the 

elements of perspective transformation matrix for doing 3D curved surface measurement. 

The 2D computer image coordinates were tabulated, but no ground truth was given, and 

therefore the accuracy is unknown. 

Category III  --- Two-plane method: see [12] for example. 

Advantage: Only linear equations need to be solved. 

Problems: 1) The number of unknowns is at least 24 (12 for each plane), much 

larger than the degrees of freedom. 2) The formula used for the transformation between 

image and object coordinates is empirically based only. 

A general calibration using the two-plane technique was proposed by Isaguirre et 

al. [13]. Full-scale nonlinear optimization is needed. 

Category IV  --- Geometric technique: see [12] for example. 

Advantage: No nonlinear search is needed. 

Problems: 1) No lens distortion can be considered. 2) Focal length is assumed 

given. 3) Uncertainty of image scale factor is not allowed. 

Fischler [12] use a geometric construction to derive direct solution for the camera 

locations and orientation. However, none of the camera intrinsic parameters can be 

computed. No accuracy results was reported. 
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2.2 The Two-Stage Calibration Technique 

The Two-Stage Calibration Technique introduced by Roger Tsai [1] has advantage 

in terms of accuracy, speed, and versatility over other techniques mentioned in Chapter 1. 

The fundamental basis of the technique is the radial alignment principle (to be described in 

Section 2.3) by which the following four steps of transformation from 3D world coordinate 

to computer image coordinate are established. The parameters are calibrated in each step. 

2.2.1. The Four Steps of Transformation from 3D World Coordinate to 

Computer Image Coordinate. 

Figure 2-1 illustrates the basic geometry of a camera model. (xw, yw, zw) is the 3D 

coordinate of an object point P in 3D world coordinate system. (x, y, z) is the 3D coordinate 

of the object point P in the 3D camera coordinate system, which is centered at point O, the 

optical center, with the z axis the same as the optical axis. (X Oi  Y) is the image coordinate 

system center at Oi  (the intersection point of the optical axis z and front image plane), and 

X, Y axes are parallel to x, y axes, respectively. (Xu, Yu) is the image coordinate of (x, y, 

z) if a perfect pinhole camera model is used. (Xd, Yd) is the actual image coordinate which 

differs from 

(Xu, Yu) 

 due to lens distortion. (Xf, Yf) is the coordinate used in computer 

which is the number of pixels for the discrete image in the frame memory. To relate the 

image coordinate in the front image plane to the computer image coordinate system, 

additional parameters need to be specified and calibrated. 
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Figure2-1  Camera geometry perspective projection 

The overall transformation from (xw, yw, zw) to (Xf, Yf) is depicted in Figure 2-2. 

The following is the transformations in analytic form for the four steps in Figure 2-2. 



(2-1) 
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Figure 2-2  Four steps of transformation from 3D world coordinate to computer 
image coordinate. 

Step 1: Rigid body transformation from the object world coordinate system (xw, 

yw, zw) to the camera 3D coordinate system (x, y, z). 

where R is 3 x 3 rotation matrix 
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(2-2) 

(2-3) 

(2-4a) 

(2-4b) 

and T is the translation vector 

The parameters to be calibrated in this step are R and T. 

The rotation and translation can be viewed as a rotation parallel to the real world 

coordinate system and a translation into the origin, rotating and translating the camera 

world coordinate into the real world coordinate (Rogers, Adams [11]). 

Step 2: Transformation from 3D camera coordinate (x, y, z) to ideal (undistorted) 

image coordinate (Xu, Yu) using perspective projection with pinhole camera geometry, 

with reference to Figure 2-3. 

Figure 2-3  Pinhole camera model 



(2-5c) 
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The parameter to be calibrated in this step is the effective focal length f. 

Step 3: Radial lens distortion. There are two kinds of lens distortion --- radial and 

tangential. For each kind of lens distortion, an infinite series is required. However 

according to Roger Tsai [1], for most of industrial machine vision applications where CCD 

or CID are frequently used, only radial distortion needs to be considered, and only one term 

is needed. Any more elaborate modeling not only would not help but also would cause 

numerical instability. 

Figure 2-4  Modeling lens distortion 

Figure 2-4 shows the modeling of radial lens distortion. The distance between Xd  

and Yd  is r. The distance between Xd  and Xu  is D. The distance between Yd  and Yu  is Dy. 

Dx  and Dy  can be calculated by using the following formula: 

Dx = Xd (k1r2 + k2r4 +...) ≅ Xdk1 r2 	(2-5a) Dy = Yd (k1r2 + k2r4 +...) ≅ Ydk1 r2 	(2-5b) 

Radial lens distortion is computed by 
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Xd  + Dx  = Xu 	 (2-6a) 

Yd  + Dy = Yu 	(2-6b) 

where (Xd, Yd) is the distorted or real image coordinate on the image plane. 

The parameter to be calibrated here is the distortion coefficient k1. 

Step 4. Transformation from real image coordinate (Xd, Yd) to computer image 

coordinate (Xf, Yf) 

Xf  = Sx  dx'-1  Xd  + cx 	 (2-7a) 

Yf  = dy-1Yd  + cy 	 (2-7b) 

where Xf, Yf  are the row and column numbers of the image pixel in computer frame 

memory, respectively, cx, cy  are the row and column numbers of the center of computer 

frame memory, respectively. The parameter dx' and dy are defined below. 

where dx 	center to center distance between two adjacent sensor 

elements in X (scan line) direction. 

dy 	center to center distance between two adjacent sensor 

elements in the Y direction. 

Ncx 	number of sensor elements in the X direction. 

Nfx 	number of pixels in a line as sampled by the 

computer. 

The parameter to be calibrated here is the uncertainty image scale factor Sx. 

Sx  is the horizontal scale factor, an uncertainty scale-factor resulting from a 

mismatch between computer image acquisition hardware and camera hardware. It affects 

the one-pixel width in X direction on the image sensor as they appear in the computer frame 

memory. 



(2-8) 

(2-9a) 

(2-9b) 
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dx' = Sxdx  

where as defined above dx  is the one-pixel-width on sensor elements in X direction (scan 

line). dx'  is the one pixel width on computer image frame. Sx  can be calculated 

approximately by using the equation Sx  = fc  / fs, where fc  is the sample frequency of the 

CCD camera, and fs  is the sample frequency of the A/D converter in acquisition hardware. 

In this implementation, a CCD discrete array sensor is used. Since the image is 

scanned line by line, the distance between adjacent pixels in the Y direction is just the same 

as dy. Therefore, (2-7b) is the right relationship between Yd  and Yf. However, the situation 

in X is different. In TV camera scanning, an analog waveform is generated for each image 

line by zeroth-order sampling and holding. Then it is sampled by the computer into Nfx  

samples, Therefore 

where X = Xf  - cx, is the image coordinate. 

2.2.2 Equations Relating the 3D World Coordinates to the 2D 

Computer Image Coordinates. 

Now we are in a position to give the general equations relating the 3D world 

coordinates to the 2D computer image coordinates. By combining Step 2 to Step 4, the 

following equations relating (X, Y) computer coordinate to (x, y, z), the 3D coordinate of 

the object point in camera coordinate system can be derived. 

where r2  = (Sx-1  dx'X)2  + (dy  Y)2, X = Xf  - cx, Y = Yf  - cy 

Substituting (2-1) into (2-9a) and (2-9b) gives 
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(2-10a) 

(2-10b) 

where r2 = (Sx-1 dx'X)2 + (dy  Y)2. The last two equations will be used in the next 

chapter to relate the 3D world coordinate (xw, yw, zw) to the 2D computer image coordinate 

(X, Y). 

2.2.3 Observations for the Two-Stage Calibration Technique  

In the following, four observations are made, which are the fundamental basis of the 

two-stage calibration technique. They are illustrated in Figure 2-5. 
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Figure 2-5 The radial alignment constraint 

Observation I: Since the distortion is assumed to be radial, the direction of the 

vector 

OiPd 

 remains unchanged no matter how much the distortion is (i.e., Oi Pd  always lies 

on the line of OiPu), and is radially aligned with the vector POZP extending from the optical 

axis (i.e., the point POZ  on the optical axis whose z coordinate is the same as that for the 

object point (x, y, z)) to the object point (x, y, z). For proof of this radial alignment 

constraint, see Roger Tsai [1]. 

Observation II: The effective focal length f also does not influence the direction of 

the vector OiPd  since f scales the image coordinate Xd  and Yd  by the same rate. 

Observation III: If the world coordinate system is translated and rotated in x and y 

direction such that OiPd  // POZP, then translation in z will not alter the direction of OiPd . 

This comes from the fact that, according to Equations (2-4a) and (2-4b), z changes Xu and 

Yu by the same scale, so that OiPu  // PiPd.  



21  

Observation IV: OiPd  is parallel to POZP for every point and independent of the 

radial distortion, the effective focal length, and the z component of 3D translation vector. 

This allows the rotation matrix R and the x- and y- component of the transformation matrix 

T to be calculated from the world coordinate system. 

For the proof of above radial alignment constraint, see Roger Tsai [1]. What we 

should know is that not only is the radial alignment constraint sufficient to determine 

uniquely the extrinsic parameters, but also the computation entails only the solution of 

linear equations with five to seven unknowns. This means the camera calibration can be 

done fast and automatically since no initial guess is needed, which is normally required for 

nonlinear optimization. 



CHAPTER 3 

IMPLEMENTATION 

This chapter describes the implementation of the camera calibration technique 

introduced by Roger Tsai [1]. The experimental set up is first given, followed by the step 

by step description of the experimental procedure. The computation algorithm and their 

implementation are presented after the procedure. Finally, the test results are reported. 

3.1 Experimental Set Up for Camera Calibration Using Monoview 

Coplanar Set of Points  

Figure 3-1  Experimental setup 

Figure 3-1 shows the experimental set up for the calibration. A monoview coplanar 

set of points is used for the calibration. The test points are the intersection points of the 

horizontal lines and the vertical lines on a test post. The world coordinates of each point are 

known and the corresponding computer image coordinates are measured. In the 

experiment, a software called xv is used to measure the computer image coordinates. 
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In the actual setup, the (xw, yw, zw) coordinate system are chosen such that zw  = 0 

(This is realized by setting all test points in the same plane), and the origin is not close to 

the center of view of the camera coordinate system. The purpose for these is to make sure 

that T is not exactly zero. 

3.2 The Computation Algorithm  

This section describes the implementation procedure step by step. The presentation 

will be algorithm-oriented. 

1) Stage 1  --- Compute 3D orientation and X- and Y- position of the object points. 

i) Compute the distorted image coordinates (Xd, Yd) 

Procedure: 

a) Grab a frame into the computer frame memory. Detect the row and column 

numbers of each calibration point i, call it (Xfi, Yfi). 

b) Obtain Ncx, Nfx, dx, dy  using information of CCD camera and frame memory 

supplied by the manufacturer (see page 18 for definitions) 

For this experiment 

Ncx  = 492 

Nfx  = 512 

dx  = 0.000525135 (inch) 

dy  = 0.000679326 (inch) 

Calculate dx'  by using the formula 

dx = 0.000507504 (inch) 

c) Take (cx, cy) to be the center pixel of frame memory. 

(cx, cy) = (256, 256) 

d) Compute (Xdi, Ydi) using 

Xdi  = Sx -1dx'(Xfi - cx) 
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Ydi  = dy(Yfi - cy) 

for i = 1, 2,..., N, where N is the total number of calibration points. Sx  = fc  / fs, where fc  = 

15.734 KHz, fs  = 15.098 KHz, Sx  = 1.042 (see Chapter 2, Section 2.2.2 for definition of f c  

and fs). 

ii) Compute the five unknowns Ty-1r1, Ty-1r2, Ty-1Tx, Ty-1r4, and Ty-1r5. 

Procedure: For each point i having (xwi, ywi), (xdi, ydi) as the 3D object world 

coordinate and the corresponding image coordinate (computed above) respectively, 

formulate the following equation with Ty-1r1

, Ty

-1r

2, Ty-1T

x

, Ty-1

r

4, and Ty

-1

r5 

 as 

unknowns: 

With N (the number of object points) much larger than five, an overdetermined system of 

linear equations can be established and solved for the five unknowns 

Ty-1r1 , Ty-1r2, Ty-1Tx, Ty-1r4, Ty-1r5

. 

iii) Compute (r1, r2,..., r9, Tx, Ty) from 

Ty-1r1 , Ty-1r2, Ty-1Tx, Ty-1r4, Ty-1r5

): 

a) Compute Ty2 from T

y-1r1 , Ty-1r2, Ty-1Tx, Ty-1r4, Ty-1r5

: 

Procedure: Let c be a 2*2 matrix, defined as 
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(3-13) 

If there is not a whole row or column of c that vanishes, then Ty2  can be computed with the 

next equation 

 where Sr = r1'2 + r2'2 + r4'2 + r5'2,r1' = r1/Ty, r2 = r2/Ty, r4 = r4/Ty, r5 = r5/Ty.  

Else compute Ty2  with 

 Ty2  = (ri'2 + rj'2)-1  

where ri'  and rj' are the elements in the row or column of c which do not vanish. 

b) Determine the sign of Ty. 

After Ty2  has been found, Ty  can then be obtained if the sign of Ty  is determined. 

Procedure: 

1) Pick up an object point i whose computer image coordinate (Xfi, Yfi) is away 

from the image center (cx, cy) and the object world coordinate is (xwi, ywi, zwi). 

2) Pick the sign of Ty  to be + 1. 3) 

Compute the following: 

 r1 = Ty-1r1Ty 	r2 = Ty-1r2Ty 

 r4 = Ty-1r4Ty 	r5 = Ty-1r5Ty  Tx = Ty-1TxTy 

 

x = r1xw + r2yw + Tx 	y = r4xw + r5yw + Ty 

where Ty-1r1, Ty-1r2, Ty-1Tx, Ty-1Tx, Ty-1r4, Ty-1r5  are determined in ii). 



(3-16a) if 

(3-16b) 
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4) If x and X have the same sign and y and Y have the same sign 

then sign (Ty) = + 1, 

else sign (Ty) = - 1. 

c) Compute the 3D rotation matrix R, i.e., its entries r1, r2,..., and r9. 

Procedure: 

Compute R with the following formula: 

where s = - sign (r1r2+r3r4). Sign (arg) is equal to +1 or -1 depending on the sign of its 
argument arg. r7, r8, r9  are determined from the outer product of the first two rows using 
the orthonormal and right-handed property of R. That is, 

then 

r
7  = (1-r12-r42)1/2  

r
8  = (1-r22-r52)1/2 

r9 = (1-r72-r82)1/2 
 

3) If f<0 (obtained by using (3-16a)), then the sign of the elements r3, r6, r7, r8  in 

matrix R must be reversed, i.e. 



(3-17) 
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For the proof of (3-16b), see Roger Tsai[1] 

Note that in the experiment, to select a valid one between the two solutions in (3-

-16a) and (3-16b), we use the linear equation in (3-17) below for computing approximation 

of f and Tz  by ignoring distortion. The wrong one will yield negative f and the right one 

will yield positive f. 

Stage 2 Compute effective focal length f, distortions coefficient k1 and displacement 

along z axis Tz: 

d) Compute an approximation of f and Tz  by ignoring lens distortion. 

Procedure: For each calibration point i, establish the following linear 

equation with f and Tz  as unknowns: 

where yi  = r4xwi  + r5ywi  + Ty  

wi  = r7xwi  + r8ywi  

With several object calibration points, this yields an overdetermined system of 

linear equations that can be solved for the unknowns f and Tz. Note that the calibration 

plane must not be exactly parallel to the image plane, otherwise (3-17) becomes lineally 

dependent. 

e) Compute the exact solution for f, Tz, k1. 

Procedure: Solve (3-10b) with f, Tz, k1  as unknowns using steepest descent 

optimization, use the approximation value for f and Tz  computed in d) as initial guess, and 

zero as the initial guess for k1. 
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3.3 Mathematical Algorithms and Their Implementation 

3.3.1. Approximations Using Least Square Method 

The ability to obtain accurate measurements is limited by the error of the 

measurements and the nature of the measured tools. One approach to overcome this 

problem is to take much more measurements than needed. If the errors are expected to be 

random, with much more measured data than unknowns, an overdetermined system can be 

established and can be used for a least square solution. 

Using m observations, an overdetermined system can be established leading to an 

approximation of n unknowns (with m >> n). Consider a linear system Ax = b, where 

There may not exist a choice of x that perfectly fits the data b. In other words, 

probably the vector b will not be a combination of the column vectors of A, it will be 

outside the column space. The problem is to chose such an x that the error is minimized, 

and this minimization will be carried out in the least squares sense. The error is E = || Ax -

- b || (||k|| is the length of a vector k). This is exactly the distance from b to the to the point 
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Ax in the column space (Note that Ax is the combination of the columns with coefficients 

(x1, ..., 	xn). Therefore searching for the least squares solution x, which minimizes E, is the 

same as locating the point p = Ax which is the closest point to b. With reference to Figure 

3-2, p must be the projection of b onto the column space and the error vector (b-Ax) must 

be perpendicular to that space.  

Figure 3-2  Projection onto the column space of a 3 by 2 matrix. 

The calculation of x is performed in the following way: 

The error vector must be in the nullspace of AΤ. 

AΤ(b-Ax) = 0 	or ATAx = AΤb 

Therefore, the least squares solution to an inconsistent system Ax = b of m 

equations with n unknowns satisfies AΤAx = AΤb and if the column of A are linearly 

independent, then AΤA is invertible and 

x = (AΤA)-1AΤb. 	 (3-18) 

This is the unique least square solution.  
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3.3.2 Implementation of Least Square Solution 

The realization of Equation (3-18) involves matrix transposition, matrix 

multiplication and matrix inversion. The program for the least square solution is available 

in computer Lab. To aid those readers who intend to understand the program, the following 

presentation will be algorithm-oriented. 

Matrix Transposition 

Matrix transposition is defined for nxn matrix and is easy to implement: the rows 

and the columns of a square matrix are interchanged, i.e., the element nij  is replaced by the 

element nji, and vice versa, while the elements ni=j  remain unchanged. The algorithm for 

program could be stated as following (the program source code can be found in appendix): 

for i = 0, i < row 

for j = 0, j < n 

transposed [j] [i] = matrix [i] [j] 

Matrix Multiplication 

Matrix multiplication can be performed if the number of rows of the first matrix are 

identical to the number of columns of the second matrix. It is executed by multiplying the 

elements of the row of the first array with the elements of the columns of the second array. 

The " intersection " of the row and the column is the " location " of the element in the new 

matrix (for example, if cij  is the new matrix, then i is row number of the left-hand matrix 

and j is the column number of the right-hand matrix). A more accurate definition of matrix 

C as the product of two matrices A and B is:  

where n is both the number of rows in matrix A, A = {aij} and the number of columns in 

matrix B, B = {bij} 

The algorithm for program could be following (the program source code can be  
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found in appendix): 

for i = 0, i < column B 

for j = 0, j < row A 

for k = 0, k < row b 

matrix [j] [i] = matrix [j] [i] + matrix [j] [k] * matrix [k] [i]  

Matrix Inversion 

Matrix inversion requires more complex computation than above two operations. It 

is based on the fact that for a nonsingular matrix A, the following holds: 

AA-1  = A-1A = I 

where I is the identity matrix. If a matrix A is multiplied by a matrix B and the result is the 

identity matrix, then B = A-1. 

To obtain a matrix B which satisfies AB = I, the matrix A is first extended by a 

identity matrix to the form of 

then performed by using Gaussian Elimination to an upper triangle matrix: 

and continued with Jordan Reduction to transfer matrix A to identity matrix. After these 

operations, matrix B comes out 
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The matrix B is nothing but the inverted matrix A. 

The algorithm for program could be following (the program source code can be 

found in Appendix): 

form augmented matrix 

for i = 0, i < n-1, do L1 

L1: 	if matrix [i] [i] == 0 

search for row m >= j with matrix [n] [i]!= 0 

if found then exchange row[i] with row[m] 

else print: no unique solution 

for j = i+1, j < n (j is the next row after i) 

m = matrix [j] [i] / matrix [i] [j] 

for row j do 

matrix [i] [k] = matrix [j] [k] - m matrix [i] [k] 

if matrix [n- 1][n- 1] == 0 

then print: no unique solution 

else for j = n-1, j > 0, do L2 

L2: 	m = matrix [j] [j] 

for 1 = j, 1 < 2*n, normalize row matrix [j] [j]: 

matrix [j] [1] = matrix [j] [1] / m 

for i = j-1, >= 0 

m = matrix [i] [j] 

for k = j, k < 2*n, do Gauss-Jordan Reduction 
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matrix [i] [k] = matrix [i] [k] - m * matrix [j] [k] 

m = matrix [0] [0] 

for 1 = 0, 1 < 2*n, normalize row [0] to 1: 

matrix [0] [1] = matrix [0] [1] / m 

3.3.3 Approximation Using Steepest Descent  

The idea of this method is to minimize functions with respect to a set of 

unconstrained parameters. This method requires only computations of the objective 

function F(v) and gradient vector G(v). Each computation of a direction vector and 

corresponding minimization in one variable is referred to as an iteration. 

Let 	F(v) = F (x, y) 	 (3-19) 

With reference to Figure 3-3, to find the solution x, y which satisfies F (x, y) = 0, 

we can start with an initial value (x0, y0), go along the direction in which the value of F 

decreases until the value of F approach zero and the desired approximation solution is 

obtained. 

Figure 3-3  Steepest descent method 
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As we know, the gradient direction at a point (x, y) is defined as 

and its direction is the direction in which the value of F raises fastest. Therefore, the 

opposite direction -g is the direction that the value of F descend fastest. The steepest 

descent method is to descend the value of F step by step along this direction (-g) until the 

criteria are satisfied. Above discussion of the steepest descent method is based on two 

dimensional variables. It can be extended to any dimensional variables directly. 

3.3.4 Implementation of Steepest Descent  

Let (x0, y0, z0) be the initial approximation solution. Compute the gradient of F at 

point (x0, y0, z0): 

g0  = (g

x0

, g y0, gz0)T  

The next approximation (x1, y1, z1) is obtained by the following equations: 

x1  = x0  - λgx0  

y1  = y0  - λgy0  

z1  = z0  - λgz0  

where λ  is a step length. 
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Use (x1 , y1, z1) as a new approximation solution, repeat the above computation until 

some point (xi, yi, zi) is obtained such that IF (xi, yi, zi) | < c, where c is the desired criteria. 

The algorithm used in the experiment is as the following (the program source code 

can be found in Appendix): 

input initial value (x0, y0, z0) 

for i = 0, i <= size do 

x[i+1] = x[i] - λgx[i] 

y[i+1] = y[i] - λgy[i] 

z[i+1] = z[i] - λgz[i] 

if F[i+1] <= c 

then stop 

else if F[i+1] <= F[i]  

then i = i+1 

else λ  = λ/2 

repeat 
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3.4 The Test Result 

This section will describe the experiment operation and give the experiment result. 

3.4.1 Experiment Hardware 

The vision system used in this experiment is build upon a CCD TV camera, a 

computer station and an image data acquisition hardwares. 

The CCD TV camera, SONY M-852 from CHORI company, has a resolution of 

510(H) x 492(V) picture elements. A zoom lens is mounted on the TV camera. The image 

processing software is implemented on a computer station. The image acquisition 

hardwares are from DATACUBE company. 

In this thesis, the calibration points are created by making a set of horizontal lines 

and a set of vertical lines (see Figure 3-4). The horizontal lines are parallel to each other 

and are 0.5 inch apart from each other. These rules also apply to the vertical lines. A total 

of 64 points which are the intersection points of horizontal lines and vertical lines are 

chosen for the experiment. The CCD camera is mounted 90 inches away from the 

calibration plane. The output of the CCD camera is connected to the DATACUBE 

electronic circuit boards and the output of the DATACUBE is connected to both the 

computer station and the TV screen which is used to monitor the images (see Figure 3-1). 

The test pattern is placed on a level board. The origin of the real world coordinate 

system in the experiment is chosen away from the north-west point shown in Figure 3-4 by 

an offset of (200, 200) (inches). The X-axis is paralleled to the horizontal lines and Y-axis 

is parallel to the vertical lines. The X-Y plane of the world coordinate system is on the same 

plane as the test pattern. The level board must be precisely leveled so that the Z-components 

of each test point in the world coordinate system are exactly zero. The level board is 

perpendicular to the working table and is not perpendicular to the optical axis of the CCD 

camera (see Figure 3-4). 
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Figure 3-4 The test pattern 

3.4.2 Calibrating a TV Camera  

This section will present the experimental procedure for calibrating a TV camera. 

Login in the Imager which is the name of a computer station used in this 

experiment. Type command "image1" under the path of /home/imager/bli. A picture of the 

test pattern will appear on the TV screen. Focus the lenses until the best quality of the 

picture is obtained. Type command "image2" under the same path. The image will be stored 

in the computer with the default file name "picture". Change this file into a ".gif " file so 

that it can be displayed in the computer screen. Figure 3-5 shows the test pattern viewed in 

computer screen. 
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Figure 3-5  Test pattern viewed in computer screen 

Obtain the row and the column number of each calibration point in the computer 

image plane. Obtain the image center by taking the apparent center of the computer image 

frame buffer offset by the number of blank lines. Type command "cal " to run the 

calibration program. Input the data according to the prompt set by the program. The final 

calibration results will appear on the computer screen. 
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3.4.3 Experiment results 

There are four data files available from the camera calibration: 

call.dat --- Containing the information used to solve the five unknowns Ty-1r1,  Ty

-1r2, Ty-1Tx, Ty-1r4, Ty-1r5. 

cal2.dat --- Containing the information used to solve the approximation value of f 

and T. 

cal3.dat --- Containing the information of R matrix and Ty. 

cal4.dat --- Containing the information of f, Tz  and k1. 

For the CCD M-852 TV camera with a zoom lens, set the marked focal length f 

equal to 75 mm. The image coordinates in the computer frame memory and the 

corresponding world coordinates are shown in Table 3-1. 

Table 3-1  Image coordinates in the computer frame memory and the 

corresponding world coordinates 

Xfi(row) Yfi(column) Xwi(inch) Ywi(inch) 

94 88 200.5 200.0 

145 125 201.0 200.5 

197 161 201.5 201.0 

199 198 202.0 201.0 

251 235 202.5 201.5 

253 273 203.0 201.5 

303 272 203.0 202.0 

306 310 203.5 202.0 

358 374 204.0 202.5 

360 385 204.5 202.5 

414 423 205.0 203.0 
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The calibrated parameters are: 

f = 75.538 mm 

Tx  = 194.523 

Ty  = 203.377 

Tz  = 159.283 

k1  =1.028 

For different focal length of the CCD camera, repeat the same procedure described 

above. 

The measured parameters are: 

θ  = 25°  

ϕ = 0°  

ψ = 0°  

where θ  is the yaw angle, ϕ is the pitch angle, and ψ is the tilt angle for rotation. 

f = 75.0 mm 

Tx = 209.0 

Ty  = 205.5 

Tz  = 157.0 

Although the desired accuracy of the calibration technique developed by Roger Tsai 

was proved theoretically (see Roger Tsai [1]) which is good enough to serve most of 
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practical applications for high accuracy 3D machine vision, it is always not easy to obtain 

a high accuracy ground truth for camera calibration parameters that can serve as absolute 

reference. One way to assess the accuracy of the calibrated parameters is to see how well it 

can sense or measure the 3D world. This could be a future research subject. 



CHAPTER 4 

SUMMARY AND DISCUSSION 

This chapter will give a summary of this thesis and a suggestion for further work. 

4.1 Conclusion 

In this thesis, we explored several kinds of camera calibration technique for 3D 

machine vision metrology with a concentration on a new camera calibration technique 

developed by Roger Tsai. This technique establishes a unique relationship from world 

coordinate system to computer image coordinate system. The experiment conducted in this 

thesis demonstrated that this technique is efficient in computation and feasible in 

implementation. It satisfies several requirements for camera calibration, i.e., autonomous, 

accurate, reasonably efficient, versatile and usage of common off-the-shelf camera and lens 

only. 

Both theory, concept and detail procedures and algorithms for the implementation 

of the technique are presented. The effective focal length, the lens correction factor and the 

image scale factor are successfully calibrated. These calibrated parameters could be used 

by those who want to use the CCD camera in their research, and the entire work in this 

thesis may pave the way for further research in camera calibration. 

4.2 Future Work 

One of the future research subjects is to calibrate a camera using monoview 

noncoplanar points. The same pattern used in coplanar case can be used, except that it is 

moved to several different heights by z direction. All procedures are basically the same as 

those presented in this thesis, except that the linear matrix equation derived from the radial 
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alignment constraint yield solutions for seven unknowns instead of five, since Zw  is no 

longer identically zero. For more details see Roger Tsai [1].  



APPENDIX: PROGRAMS  

PROGRAM LESQO 

C 	LEAST SQUARE METHOD SOLVED FOR THE FIVE UNKNOWNS 

 Ty-1r1, Ty-1r2, Ty-1Tx, Ty-1r4, Ty-1r5 	C 

3 	 INTEGER LDA, LDX, NCA, NRA, NUMEXC,I,J 

4 	 PARAMETER (NCA=5,NRA=64, NUMEXC=1, LDA=NRA, LDX=-
NCA) 

C 	NCA IS THE NUMBER OF UNKNOWNS 	C 

C 	NRA IS THE NUMBER OF CALIBRATION POINTS 	C 

C 	NUMEXE IS THE COLUMN NUMBER OF B MATRIX 	C 

6 	 REAL 	X(LDX, NUMEXC) 

8 	 REAL 	A(LDA, NCA+NUMEXC) 

9 	 SAVE A 

11 	 EXTERNAL 	LQRRV, SGEMM, WRRRN 

12 	 OPEN(UNIT=1,FILE='R.DAT',STATUS='OLD') 

13 	 DO 15 I=0,LDA 

DO 15 J=1,NCA+NUMEXC 

14 	 READ(1,100,END=16) A(I,J) 

100 	 FORMAT(F) 

15 	 CONTINUE 
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CLOSE(UNIT=1) 

16 	 CALL LQRRV (NRA, NCA, NUMEXC, A, LDA, X, LDX) 

110 	 CALL WRRRN (' SOLUTIONS 1-2 ', NCA,NUMEXC, 

& 					X, LDX, 0) 

130 	CALL SGEMM('N','N',NRA,NUMEXC, NCA, 

& 			1.E0,A,LDA,X, LDX, -1.E0, A(1, NCA+1), LDA) 

170 	 CALL WRRRN (' RESIDUALS 1-2', NRA, NUMEXC, 

& 				A(1, NCA+1), LDA, 0) 

C USE THE LIBRARY FUNCTIONS 	C 

200 	 END 

C 	DATA INPUT IN THE ORDER OF COLUMNS, THAT IS 1ST,2ND,...- 
COLS. C 

C 	EG. A= (1 2 3 | 4 5) 	C 

C 	 (6 7 8 | 9 10) 	C 

C 	 (11 12 13 | 14 15) 	C 

C 	 (16 17 18 | 19 20) 	C 

C 	 (21 22 23 | 24 25) 	C 

C DATA A/1,6,11,16,21,2,7,12,17,22,3,8,13,18,23,4,9, C 

C 	& 	14,19,24,5,10,15,20,25/ 					C 



46  

PROGRAM LESQ1 

C 	LEAST SQUARE METHOD SOLVED FOR THE APPROXIMATION 
OF THE TOW UNKNOWNS f AND Tz C 

INTEGER LDA,LDX,NCA,NRA,NUMEXC,I,J 

4 	 PARAMETER (NCA=2,NRA=64, NUMEXC=1, LDA=NRA, LDX=-
NCA) 

C 	NCA IS THE NUMBER OF UNKNOWNS 		C 

C 	NRA IS THE NUMBER OF CALIBRATION POINTS 		C 

C 	NUMEXE IS THE COLUMN NUMBER OF B MATRIX 		C 

6 	 REAL 	X(LDX, NUMEXC) 

REAL 	B(LDA, NCA+NUMEXC) 

8 	 REAL 	A(LDA, NCA+NUMEXC) 

9 	 SAVE 

	

A 

12 	 OPEN(UNIT=3,FILE='F.DAT',STATUS='OLD') 

13 	 DO 15 I=1,LDA 

DO 15 J=1,NCA+NUMEXC 

WRITE(*,*) 'OK4' 

14 	 READ(3,90,END=66)A(I,J) 

WRITE(*,*) 'OK5' 

90 	 FORMAT(F) 

15 	 CONTINUE 
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56 	 WRITE(*,*) 'OK6' 

100 	 CALL LQRRV (NRA, NCA, NUMEXC, A, LDA, X, LDX) 

110 	 CALL WRRRN (' SOLUTIONS 1-2 ', NCA,NUMEXC, 

& 				X, LDX, 0) 

130 	CALL SGEMM('N','N',NRA,NUMEXC, NCA, 

& 			1.E0,A,LDA,X, LDX, -1.E0, A(1, NCA+1), LDA) 

170 	 CALL WRRRN (' RESIDUALS 1-2', NRA, NUMEXC, 

& 				A(1, NCA+1), LDA, 0) 

C USE THE LIBRARY FUNCTIONS 	C 

200 	 END 
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/* program 1 	computing the distorted computer image 
coordinate xd,yd 	*/ 

#include<math.h> 

#include<stdio.h> 

#define size1 5 

#define size2 5 

#define siz 50 

#define c 0.001 

float a1[size1], a2[size1], a3[size1], a4[size1], a5[size1], 
b[size1]; 

float A1[size2], A2[size2], B[size2]; 

int i; 

main() 

{ 

float xd[size1], xf[size1], yf[size1], yd[size1]; 

float sx, dx_1, cx, cy, dy; 

float Sr, r1_1, r21, r4 1, r5 1; 

float Ty_1r1, Ty_1r2, Ty_1Tx, Ty_1r4, Ty_1r5; 

float Ty,Ty2,Tx,xi,yi, yii, wii; 

float s,r1,r2, r3,r4,r5, r6, r7, r8, r9,sign; 

float g1[siz], g2[siz], g3[siz], F[siz],r22[siz], f[siz], Tz 
[siz],k1[siz]; 

float K; 

float tmp1,tmp2,tmp3; 

float xwi, ywi,zwi, Xdi, Ydi,/* an object point i to compute 
the sign of Ty */ Xfi,Yfi; 

float xw[size2], yw[size2], zw[size2], x[size2], y[size2],- 
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w[size2]; 

dx_1= 0.0005075; 

dy= 0.00067667; 

for(i=0; i<size2; i++) { 

zw[i] = 0.0; 

} 

printf( "%s\n", " input sx cx cy" ); 

scanf("%f %f %f", &sx, &cx,&cy); 

/* input sx, cx, cy from the keyboard */ 

for ( i=0; i<size1; ++i ) { 

printf( "xf[%ds\n yf[%d%s\n",i,"]=?", i, "]=?" ); 

scanf( "%f %f",&xf[i],&yf[i] ); 

/* input the computer image coordinates (xf[i],yf[i]) */ 

printf( "xw[%d%s\n yw[%d%s\n",i,"]=?", i, "]=?" ); 

scanf( "%f %f",&xw[i],&yw[i] ); 

/* input the world coordinates (xw[i],yw[i]) */ 

} 

for (i=0; i<size1; ++i) { 
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xd[i]=( 1/sx)*dx_1*(xf[i]-cx); 

yd[i]=dy*(yf[i]-cy); 

a1[i]= yd[i]*xw[i]; 

a2[i]= yd[i]*yw[i]; 

a3[i]= yd[i]; 

a4[i]= - xd[i]*xw[i]; 

a5[i]= -xd[i]*yw[i]; 

/* compute the A matrix */ 

b[i]= xd[i]; 

/* compute the B matrix */ 

} 

for (i=0; i<size1; i++) { 

printf("xd[%d%s%f 	 yd[%d%s%f\n", 
i,"]=",xd[i], 

i,"]=",yd[i]); } 

for (i=0; i<size1; i++) { 

printf("a1[%d%s%f 	a2[%d%s%f 	a3[%d%s%f 
a4[%d%s%f\n", i,"]=",a1[i], i,"]=",a2[i], i,"]=",a3[i], 
i,"]=",a4[i]); 

} 
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for (i=0; i<size1; i++) { 

printf("a5[%d%s%f b[%d%s%f\n", i,"]=",a5[i], 
i,"]=",b[i]); 

} 

sub1(); 	/*subroutine to store the data*/ 

/* program 2 computing Ty 	*/ 

printf("\n"); 

printf("%s\n", "enter: r1_1 r2_1 Ty_1Tx r4_1 r5_1"); 

scanf( "%f %f %f %f %f", &r1_1, &r2 1, &Ty_1Tx, &r4_1, 
&r5_1); 

/* input data from the results of lesq0.for */ 

Sr=r1_1*r1_1+ r2_1*r2_1 + r4_1*r4_1 + r5_1*r5_1; 

Ty2=(Sr-sqrt(Sr*Sr-4*(r1_1*r5_1-r4_1*r2_1)*(r1_1*r5_1 - 

r4_1*r2_1)))/ 

(2*(r1_1*r5_1-r4_1*r2_1)*(r1_1*r5_1 - r4_1*r2_1)); 

Ty=sqrt(Ty2); 

printf("Ty=%f\nSr=%f\n", Ty,Sr); 

/* 	program3 computing the Sign of Ty 	*/ 
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Ty_1r1= r1_1; 

Ty_1r2= r2_1; 

Ty_1r4= r4_1; 

Ty_1r5= r5_1; 

printf ("%s\n", "input xwi ywi Xfi Yfi"); 

scanf ("%f %f %f %f", &xwi , &ywi , &Xfi, &Yfi); 

/* select a point to compute the sign of Ty */ 

r1=Ty_1r1*Ty; 

r2=Ty_1r2*Ty; 

r4=Ty_1r4*Ty; 

r5=Ty_lr5*Ty; 

Tx=Ty_1Tx*Ty; 

xi =r1*xwi+r2*ywi+Tx; 

yi =r4*xwi+r5*ywi+Ty; 

Xdi=Xfi-cx; 

Ydi=Yfi-cy; 

if( xi&&Xdi > 0 && yi&&Ydi > 0 ) 

Ty=Ty; 

else Ty= -Ty; 

printf("Ty=%f\n", Ty); 

/* 	program 4: computing r1 	 r9, 	Tx 	*/ 
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s=r1*r4 + r2*r5; 

if (s<0) 

sign= 1; 

else sign = -1; 

r3= - sqrt( 1-r1*r1-r2*r2); 

r6= - sign*(sqrt(1-r4*r4-r5*r5)); 

r7= - sqrt(1-r1*r1-r4*r4); 

r8= - sqrt(1-r2*r2-r5*r5); 

r9= sqrt( -1+Sr); 

/* the sign of r3, r6, r7, r8 are determined by that 

the result of the focal length f is positive */ 

printf( "r1=%f 	 r2=%f\n", r1,r2); 

printf( "r3=%f 	 r4=%f\n", r3,r4); 

printf( "r5=%f 	 r6=%f\n", r5,r6); 

printf( "r7=%f 	 r8=%f\n", r7,r8); 

printf( "r9=%f 	 Tx=%f\n", r9,Tx); 

/* 	program 5: computing 	y[i] & w[i] 	*/ 

for( i=0; i<size2; i++ ) 	{  
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y[i]=r4*xw[i] + r5*yw[i] + Ty; 

w[i]= r7*xw[i]+r8*yw[i]; 

Al[i]= y[i]; 

A2[i]= - dy*(yf[i]-cy); 

/* compute the A matrix */ 

	

B[i] = w[i]*dy*(yf[i]-cy); 

/* compute the B matrix */ } 

for( i=0; i<size2; i++) 	{ 

printf("w[%d%s%f 	 y[%d%s%f\n", i,"]=", 
w[i],i,"]=", Y[i]); } 

for( i=0; i<size2; i++) { 

printf("A1[%d%s%f 	A2[%d%s%f 	B[%d%s%- 
f\n",i,"]=",A1[i], i, "]=", A2[i], i, "]=", B[i]); 

} 

sub2(); /* subroutine to store these data */ 

/* 	STEEPEST DECENT PROGRAM to compute f Tz k1 	*/ 
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printf("\n"); 

i=0; 

printf("Enter: f(0), Tz(0), k1(0)\n"); 

scanf("%f%f%f",&f[i],&Tz[i],&kl[i]); 

/* input the initial value from the results 

computed before */ 

r22[i]=(dx_1*xf[i]/sx)*(dx_1*xf[i]/sx)+dy*yf[i]; 

tmpl=(dy*yf[i] + dy*yf[i]*kl[i]*r22[i] - f[i]*(r4*xw[i] + 
r5*yw[i] + r6*zw[i] + Ty)/ 

(r7*xw[i] + r8*yw[i] + r9*zw[i] + Tz[i])); 

tmp2=f[i]*(r4*xw[i]+r5*yw[i]+r6*zw[i]+Ty)/(r7*xw[i]+r8*y-
w[i]+r9*zw[i]+Tz[i]); 

tmp3=(r7*xw[i] + r8*yw[i] +r9*zw[i] + Tz[i]); 

F[i]= tmp1*tmpl; 

g1[i]= 2*tmp1*(-tmp2/f[i]); 

/* dF/df */ 

g2[i]=2*tmp1*tmp2/tmp3; 

/* dF/dTz */ 

g3[i]= 2*tmp1*dy*yf[i]*r22[i]; /* dF/dk1 	*/ 

K=1; 

for ( i=0; i<=siz; ) { 
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f[i+1]=f[i]-K*g1[i]; 

Tz[i+1]=Tz[i]-K*g2[i]; 

k1[i+1]=k1[i]-K*g3[i]; 

i++; 

r22[i]=(dx_1*xf[i]/sx)*(dx_1*xf[i]/sx)+dy*yf[i]*dy*yf[i]; 

tmp1=(dy*yf[i] + dy*yf[i]*k1[i]*r22[i] - f[i]*(r4*xw[i] + 
r5*yw[i] + r6*zw[i] + Ty)/ 

(r7*xw[i] + r8*yw[i] + r9*zw[i] + Tz[i])); 

F[i]=tmpl*tmpl; 

i--; 

if(F[i+1]<= c ) 

break; 

else if ( F[i+1] <= F[i] ) 

i= i+1; 

else K=K/2; 

} 

printf("i= %d\n", i); 

printf("f(i)= %f\n", f[i]); 

printf("Tz(i)= %f\n",Tz[i]); 

printf("k1(i)= %f\n", k1[i]); 

} 

sub1() 

/* store the data for computing the five unknowns  
T

y-1
r1,Ty-1r2 , Ty-1Tx, Ty-1r4, Ty-1r5 	*/ {  
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FILE *fp; 

float rr_data[size1] [6]; 

int m,n; 

if (( fp=fopen("rdata","w")) == NULL) 	{ 

printf("Error in opening file %10s \n","rdata "); 

exit(); 

} 

else { 

for(m=0; m<sizel; m++) { 

n=0; 

rr_data[m][n]= al[m]; 

n=1;  

rr_data[m][n]=a2[m]; 

n=2;  

rr_data[m][n]=a3[m]; 

n=3;  

rr_data[m][n]=a4[m]; 

n=4;  

rr_data[m][n]=a5[m]; 

n=5;  

rr_data[m][n]=b[m]; 

} 

for(m=0; m<size1; m++) 

for(n=0; n<6; 	n++) 

fprintf(fp,"%f\n",rr_data[m][n]); 

for( m=0; m < size1; m++) 

for( n=0; n< 6; n++) 

printf("%f 	\n",rr_data[m][n]);  
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} 

fclose(fp); 

} 

sub2() 

/* store the data for computing the approximation value of 

f and Tz 	*/ 

{ 

FILE *fpp; 

float r_data[size2][3]; 

int p, q; 

if (( fpp=fopen("fdata","w")) == NULL) 	{ 

printf("error in opening file %10s \n", "fdata"); 

exit () ; 

} 

else { 

for (p=0;p<size2; p++) { 

q=0; 

r_data[p][q] = A1[p]; 

q=1; 

r_data[p][q] = A2[p]; 

q=2; 

r_data[p][q] = B[p]; 

} 

for (p=0; p<size2; p++) 

for (q=0; q<3; 	q++) 
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fprintf(fpp,"%f\n", r_data[p][q]); 

for (p=0;p<size2;p++) 

for (q=0; q<3; 	q++) 

printf("%f 	\n",r data[p][q]); 

} 

fclose(fpp); 

}  
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