7,301 research outputs found

    The Wadge Hierarchy of Deterministic Tree Languages

    Full text link
    We provide a complete description of the Wadge hierarchy for deterministically recognisable sets of infinite trees. In particular we give an elementary procedure to decide if one deterministic tree language is continuously reducible to another. This extends Wagner's results on the hierarchy of omega-regular languages of words to the case of trees.Comment: 44 pages, 8 figures; extended abstract presented at ICALP 2006, Venice, Italy; full version appears in LMCS special issu

    Modal mu-calculi

    Get PDF

    Argument filterings and usable rules in higher-order rewrite systems

    Get PDF
    The static dependency pair method is a method for proving the termination of higher-order rewrite systems a la Nipkow. It combines the dependency pair method introduced for first-order rewrite systems with the notion of strong computability introduced for typed lambda-calculi. Argument filterings and usable rules are two important methods of the dependency pair framework used by current state-of-the-art first-order automated termination provers. In this paper, we extend the class of higher-order systems on which the static dependency pair method can be applied. Then, we extend argument filterings and usable rules to higher-order rewriting, hence providing the basis for a powerful automated termination prover for higher-order rewrite systems

    User's guide to SFTRAN/1100

    Get PDF
    Extensions and improvements were made to SFTRAN, a structured programming language. This language was implemented as a precompiler that translates from SFTRAN to FORTRAN. It was available to batch and conversational users of the UNIVAC 1100 computer system. The SFTRAN language and its use are described. In addition, conversational time-sharing system command subroutines were implemented that eliminated the complications of dealing with extra files and processing steps that the use of a precompiler would otherwise require. These command subroutines are reported, and their use is illustrated by examples

    Rich Counter-Examples for Temporal-Epistemic Logic Model Checking

    Full text link
    Model checking verifies that a model of a system satisfies a given property, and otherwise produces a counter-example explaining the violation. The verified properties are formally expressed in temporal logics. Some temporal logics, such as CTL, are branching: they allow to express facts about the whole computation tree of the model, rather than on each single linear computation. This branching aspect is even more critical when dealing with multi-modal logics, i.e. logics expressing facts about systems with several transition relations. A prominent example is CTLK, a logic that reasons about temporal and epistemic properties of multi-agent systems. In general, model checkers produce linear counter-examples for failed properties, composed of a single computation path of the model. But some branching properties are only poorly and partially explained by a linear counter-example. This paper proposes richer counter-example structures called tree-like annotated counter-examples (TLACEs), for properties in Action-Restricted CTL (ARCTL), an extension of CTL quantifying paths restricted in terms of actions labeling transitions of the model. These counter-examples have a branching structure that supports more complete description of property violations. Elements of these counter-examples are annotated with parts of the property to give a better understanding of their structure. Visualization and browsing of these richer counter-examples become a critical issue, as the number of branches and states can grow exponentially for deeply-nested properties. This paper formally defines the structure of TLACEs, characterizes adequate counter-examples w.r.t. models and failed properties, and gives a generation algorithm for ARCTL properties. It also illustrates the approach with examples in CTLK, using a reduction of CTLK to ARCTL. The proposed approach has been implemented, first by extending the NuSMV model checker to generate and export branching counter-examples, secondly by providing an interactive graphical interface to visualize and browse them.Comment: In Proceedings IWIGP 2012, arXiv:1202.422

    Multi-Scale Jacobi Method for Anderson Localization

    Full text link
    A new KAM-style proof of Anderson localization is obtained. A sequence of local rotations is defined, such that off-diagonal matrix elements of the Hamiltonian are driven rapidly to zero. This leads to the first proof via multi-scale analysis of exponential decay of the eigenfunction correlator (this implies strong dynamical localization). The method has been used in recent work on many-body localization [arXiv:1403.7837].Comment: 34 pages, 8 figures, clarifications and corrections for published version; more detail in Section 4.

    User's guide for SFTRAN/360

    Get PDF
    Extension and improvements made to SFTRAN, a structured-programming language are discussed. This improved language is implemented as a precompiler that translates from SFTRAN to FORTRAN. The SFTRAN language and its use are described. Time-Sharing System (TSS) command procedures were implemented that eliminate the complications of dealing with extra files and processing steps which the use of a precompiler would otherwise require. These command procedures are described and their use is illustrated by examples

    A Decidable Class of Nested Iterated Schemata (extended version)

    Full text link
    Many problems can be specified by patterns of propositional formulae depending on a parameter, e.g. the specification of a circuit usually depends on the number of bits of its input. We define a logic whose formulae, called "iterated schemata", allow to express such patterns. Schemata extend propositional logic with indexed propositions, e.g. P_i, P_i+1, P_1, and with generalized connectives, e.g. /\i=1..n or i=1..n (called "iterations") where n is an (unbound) integer variable called a "parameter". The expressive power of iterated schemata is strictly greater than propositional logic: it is even out of the scope of first-order logic. We define a proof procedure, called DPLL*, that can prove that a schema is satisfiable for at least one value of its parameter, in the spirit of the DPLL procedure. However the converse problem, i.e. proving that a schema is unsatisfiable for every value of the parameter, is undecidable so DPLL* does not terminate in general. Still, we prove that it terminates for schemata of a syntactic subclass called "regularly nested". This is the first non trivial class for which DPLL* is proved to terminate. Furthermore the class of regularly nested schemata is the first decidable class to allow nesting of iterations, i.e. to allow schemata of the form /\i=1..n (/\j=1..n ...).Comment: 43 pages, extended version of "A Decidable Class of Nested Iterated Schemata", submitted to IJCAR 200

    Index problems for game automata

    Full text link
    For a given regular language of infinite trees, one can ask about the minimal number of priorities needed to recognize this language with a non-deterministic, alternating, or weak alternating parity automaton. These questions are known as, respectively, the non-deterministic, alternating, and weak Rabin-Mostowski index problems. Whether they can be answered effectively is a long-standing open problem, solved so far only for languages recognizable by deterministic automata (the alternating variant trivializes). We investigate a wider class of regular languages, recognizable by so-called game automata, which can be seen as the closure of deterministic ones under complementation and composition. Game automata are known to recognize languages arbitrarily high in the alternating Rabin-Mostowski index hierarchy; that is, the alternating index problem does not trivialize any more. Our main contribution is that all three index problems are decidable for languages recognizable by game automata. Additionally, we show that it is decidable whether a given regular language can be recognized by a game automaton
    corecore