73,034 research outputs found

    Source identification in image forensics

    Get PDF
    Source identification is one of the most important tasks in digital image forensics. In fact, the ability to reliably associate an image with its acquisition device may be crucial both during investigations and before a court of law. For example, one may be interested in proving that a certain photo was taken by his/her camera, in order to claim intellectual property. On the contrary, it may be law enforcement agencies that are interested to trace back the origin of some images, because they violate the law themselves (e.g. do not respect privacy laws), or maybe they point to subjects involved in unlawful and dangerous activities (like terrorism, pedo-pornography, etc). More in general, proving, beyond reasonable doubts, that a photo was taken by a given camera, may be an important element for decisions in court. The key assumption of forensic source identification is that acquisition devices leave traces in the acquired content, and that instances of these traces are specific to the respective (class of) device(s). This kind of traces is present in the so-called device fingerprint. The name stems from the forensic value of human fingerprints. Motivated by the importance of the source identification in digital image forensics community and the need of reliable techniques using device fingerprint, the work developed in the Ph.D. thesis concerns different source identification level, using both feature-based and PRNU-based approach for model and device identification. In addition, it is also shown that counter-forensics methods can easily attack machine learning techniques for image forgery detection. In model identification, an analysis of hand-crafted local features and deep learning ones has been considered for the basic two-class classification problem. In addition, a comparison with the limited knowledge and the blind scenario are presented. Finally, an application of camera model identification on various iris sensor models is conducted. A blind scenario technique that faces the problem of device source identification using the PRNU-based approach is also proposed. With the use of the correlation between single-image sensor noise, a blind two-step source clustering is proposed. In the first step correlation clustering together with ensemble method is used to obtain an initial partition, which is then refined in the second step by means of a Bayesian approach. Experimental results show that this proposal outperforms the state-of-the-art techniques and still give an acceptable performance when considering images downloaded from Facebook

    An Analysis of Optical Contributions to a Photo-Sensor's Ballistic Fingerprints

    Full text link
    Lens aberrations have previously been used to determine the provenance of an image. However, this is not necessarily unique to an image sensor, as lens systems are often interchanged. Photo-response non-uniformity noise was proposed in 2005 by Luk\'a\v{s}, Goljan and Fridrich as a stochastic signal which describes a sensor uniquely, akin to a "ballistic" fingerprint. This method, however, did not account for additional sources of bias such as lens artefacts and temperature. In this paper, we propose a new additive signal model to account for artefacts previously thought to have been isolated from the ballistic fingerprint. Our proposed model separates sensor level artefacts from the lens optical system and thus accounts for lens aberrations previously thought to be filtered out. Specifically, we apply standard image processing theory, an understanding of frequency properties relating to the physics of light and temperature response of sensor dark current to classify artefacts. This model enables us to isolate and account for bias from the lens optical system and temperature within the current model.Comment: 16 pages, 9 figures, preprint for journal submission, paper is based on a thesis chapte

    A multimodal smartphone interface for active perception by visually impaired

    Get PDF
    The diffuse availability of mobile devices, such as smartphones and tablets, has the potential to bring substantial benefits to the people with sensory impairments. The solution proposed in this paper is part of an ongoing effort to create an accurate obstacle and hazard detector for the visually impaired, which is embedded in a hand-held device. In particular, it presents a proof of concept for a multimodal interface to control the orientation of a smartphone's camera, while being held by a person, using a combination of vocal messages, 3D sounds and vibrations. The solution, which is to be evaluated experimentally by users, will enable further research in the area of active vision with human-in-the-loop, with potential application to mobile assistive devices for indoor navigation of visually impaired people

    On the Activity Privacy of Blockchain for IoT

    Full text link
    Security is one of the fundamental challenges in the Internet of Things (IoT) due to the heterogeneity and resource constraints of the IoT devices. Device classification methods are employed to enhance the security of IoT by detecting unregistered devices or traffic patterns. In recent years, blockchain has received tremendous attention as a distributed trustless platform to enhance the security of IoT. Conventional device identification methods are not directly applicable in blockchain-based IoT as network layer packets are not stored in the blockchain. Moreover, the transactions are broadcast and thus have no destination IP address and contain a public key as the user identity, and are stored permanently in blockchain which can be read by any entity in the network. We show that device identification in blockchain introduces privacy risks as the malicious nodes can identify users' activity pattern by analyzing the temporal pattern of their transactions in the blockchain. We study the likelihood of classifying IoT devices by analyzing their information stored in the blockchain, which to the best of our knowledge, is the first work of its kind. We use a smart home as a representative IoT scenario. First, a blockchain is populated according to a real-world smart home traffic dataset. We then apply machine learning algorithms on the data stored in the blockchain to analyze the success rate of device classification, modeling both an informed and a blind attacker. Our results demonstrate success rates over 90\% in classifying devices. We propose three timestamp obfuscation methods, namely combining multiple packets into a single transaction, merging ledgers of multiple devices, and randomly delaying transactions, to reduce the success rate in classifying devices. The proposed timestamp obfuscation methods can reduce the classification success rates to as low as 20%
    corecore