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Introduction

Source identi�cation is one of the most important tasks in digital im-

age forensics. In fact, the ability to reliably associate an image with its

acquisition device may be crucial both during investigations and before

a court of law. For example, one may be interested in proving that a

certain photo was taken by his/her camera, in order to claim intellec-

tual property. On the contrary, it may be law enforcement agencies that

are interested to trace back the origin of some images, because they vio-

late the law themselves (e.g. do not respect privacy laws), or maybe they

point to subjects involved in unlawful and dangerous activities (like terror-

ism, pedo-pornography, etc). More in general, proving, beyond reasonable

doubts, that a photo was taken by a given camera, may be an important

element for decisions in court.

The growing interest towards camera identi�cation is also a conse-

quence, on the other hand, of the capillary di�usion of imaging devices,

and of the widespread di�usion of images on the net. It is estimated that

in 2014 more than 1.8 billion images and videos have been published each

day, and this trend does not seem to be slowing down. The analyst may

seek information at various levels, from the type of source (camera, scan-

ner, etc.), to its brand/model (e.g. iPhone6 vs iPhone7), to the individual

1
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Figure 1. Granularity levels in forensic source identi�cation.

device, as shown in Fig.1 [1]. The identi�cation of the speci�c acquisition

device is often desired, but not always possible and in that case it makes

sense to work at a higher level of granularity. A possible approach to re-

cover the source device information of a media is to look at the meta-data

headers itself, e.g. the exchangeable image �le format (EXIF) of a photo-

graph. Unfortunately, these headers can be easily removed or counterfeited

even by a beginner forger using simple editing tools.

The key assumption of forensic source identi�cation is that acquisition

devices leave traces in the acquired content, and that instances of these

traces are speci�c to the respective (class of) device(s). This kind of traces

is present in the so-called device �ngerprint (Fig.2). The name stems from

the forensic value of human �ngerprints. In the ideal case, the device �n-

gerprint has two properties: diversity and stability. The diversity requires

that it is unique and not shared among di�erent camera models or devices,

while stability requires that the �ngerprint remains the same over time.

A major impulse to research in this �eld came with the seminal work

of Lukas et al. [2] showing that reliable device identi�cation is possible
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Figure 2. The digital image acquisition chain left a so-called device �nger-

print on each acquired image.

based on the camera photo-response non uniformity (PRNU) pattern. This

is a multiplicative noise component caused by the inhomogeneity of sili-

con wafers and imperfections of the sensor manufacturing, which, in turn,

cause a non-uniform sensitivity to light among the sensor photo-diodes.

This means that a pixel could be slightly brighter or darker than expected

by camera design, and each pixel is individually a�ected by this issue.

Each camera is characterized by its unique PRNU pattern, which can be

regarded as a sort of camera �ngerprint. All photos taken by a given cam-

era carry traces of its �ngerprint which, under suitable hypotheses, can

be retrieved, enabling reliable device identi�cation and, with some further

processing, also brand and model identi�cation [3]. Camera brand and

model identi�cation are based also on the other traces left by the internal

processing steps, like the lens aberration, the demosaicing algorithm, the

CFA and the compression matrix. Of course, the device �ngerprint itself

must be known in advance, or estimated from a large set of photos taken

by the desired source, a restrictive hypothesis that limits somewhat the

applicability of this approach.
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Figure 3. Source identi�cation performed in a perfect knowledge scenario.
In this scenario the �ngerprint of the image under test is compared to a
known �ngerprints extracted from a reference labelled data.

The device identi�cation problem takes di�erent forms depending on

the prior knowledge available. If the target image may only come from one

of a given number of cameras, whose device �ngerprint is known in advance

or can be accurately estimated, identi�cation reduces to a classi�cation

problem [2, 4, 5]. This is called perfect knowledge scenario (Fig.3). In a

limited knowledge situation with a more challenging open set scenario, the

target image may also come from unknown sources [6] and the problem

is to understand whether it was acquired by one of the known cameras

(possibly just one) or not [7]. Often, however, the analyst has only a set of

images without any information on the possible device involved [8]. In this

zero knowledge scenario the only approach is to perform a blind clustering

of the images respect to their source (Fig.4).

Camera model identi�cation and PRNU-based estimation can be also

used for image forgery detection. This is also a very hot topic in these

recent years, given the availability of modern and powerful image editing

software tools. Almost everyone can produce dozens of new digital pictures

each day and share them through social networks. For the large majority,
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Figure 4. Source identi�cation performed in a blind scenario. Here we have
no labelled data, and we want to extract from the single-image �ngerprints as
much information as possible. For example here, we cluster the data respect
to the device that took the images.

they are genuine images, however they are often manipulated and di�used

with malicious purposes, like in�uencing the public opinion or discrediting

people. Such attacks are becoming more and more frequent and sophis-

ticated, raising a serious alarm over the general trustfulness of multime-

dia assets. Many techniques, especially machine-learning ones, have been

proven to be a successful approach to deal with this task [9]. However,

an expert adversary could be able to fool them. Counter-forensics is the

research �eld that studies forensic techniques, �nds their weak points, and

tries to exploit them to fool forensic approaches. It is therefore important

to discover even the weakness of forensics tools in order to take speci�c

actions and propose ever more robust techniques.

Motivated by the importance of the source identi�cation in digital im-

age forensics community and the need of reliable techniques using device

�ngerprint, the work developed in this PhD thesis concerns di�erent source

identi�cation level, using both feature-based and PRNU-based approach

for model and device identi�cation. In addition, it is also shown that

counter-forensics methods can easily attack machine learning techniques

for image forgery detection. The thesis is hence organized so as to devote
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a chapter to these di�erent problems. In more detail,

Chapter 1 deals with feature-based techniques for camera model iden-

ti�cation. Speci�cally, an analysis of hand-crafted local features and deep

learning ones will be considered for the basic two-class classi�cation prob-

lem. In addition, a comparison with the limited knowledge and the blind

scenario will be presented. Finally, an application of camera model iden-

ti�cation on various iris sensor models will be shown.

Chapter 2 faces the problem of device source identi�cation using the

PRNU-based approach in a blind scenario. With the use of the correlation

between single-image sensor noise, a blind two-step source clustering is

proposed. In the �rst step correlation clustering together with ensemble

method is used to obtain an initial partition, which is then re�ned in the

second step by means of a Bayesian approach. Experimental results show

that this proposal outperforms the state-of-the-art techniques and still

give acceptable performance when considering images downloaded from

Facebook.

Chapter 3 presents an application of forgery localization in a blind

scenario. The source image clustering algorithm presented in chapter 3

is used in a realistic scenario to carry out image forgery detection when

PRNU is not available.

In Chapter 4 it is presented a counter-forensics technique based on

a greedy strategy that attacks a machine-learning based method using

handcrafted features. The analysis is carried out on a synthetic datasets

of forged images and shows that a malicious attacker can easily fool the

detector using the proposed approach.



Chapter 1
Learning-based source

identi�cation

Camera model identi�cation relies on the distinctive traces left in im-

ages by the processing steps carried out inside modern cameras. In fact,

in digital cameras, the output image is obtained by applying a number

of sophisticated algorithms, each characterized by several free parameters.

Well-known examples are demosaicing, based often on complex adaptive

nonlinear interpolation, and JPEG compression, where the quantization

matrix can be de�ned by the user. Each camera model is characterized

by its own combination of in-camera algorithms. It is highly unlikely that

di�erent camera models, even of the same brand, use the very same set

of algorithms and parameters and, therefore, very likely that their traces

allow reliable identi�cation.

In literature there are a number of papers that try to solve the problem

looking for artifacts related to speci�c in-camera processing steps, trying

to estimate their unknown parameters. However, a blind approach is also

possible, where no hypothesis is made on the origin of camera-speci�c

7



8 CHAPTER 1. LEARNING-BASED SOURCE IDENTIFICATION

marks, and the identi�cation task is regarded simply as a texture classi-

�cation problem. With this approach, the focus shifts on the de�nition

of the most discriminative features, irrespective of their physical meaning.

Both global and local features can be considered, drawing often from the

vast literature of closely related �elds, such as material classi�cation or

steganalysis. Recently, the use of deep learning and CNNs permits to ex-

tract such feature directly learning from the data the useful feature that

permit to distinguish between camera models. This so-called data driven

approach needs a big labeled dataset for training but guarantee a big im-

provement on performance.

The aim of this chapter is to evaluate a class of such feature on di�erent

scenarios. First a perfect knowledge scenario is considered where we have

information of the camera model source of the images in our dataset. Then

a limited knowledge and zero knowledge scenarios are taken in account.

In addition both a blind and data driven feature are proposed. The

�rst uses the co-occurrences of image residuals [10] assessing their po-

tential for the camera model identi�cation task. It is worth noting that

co-occurrence based local features have been also applied recently [11], to-

gether with some features proposed in [3]. In [12] we have tested the very

same approach, starting from a state-of-the-art denoising �lter [13], and

found it to be inferior to that based on simple high-pass �ltering. In this

preliminary results only grayscale images were used, and only a perfect-

knowledge scenario was considered.

A data driven based on CNN is also proposed. Respect to other CNN-

based approaches recently proposed [14, 15], the goal is to keep the net

relatively small, to be used on small datasets and to keep the complexity

quite low. Since for training they need a full labeled dataset, only a perfect

knowledge scenario is considered.

In the next Section we review model identi�cation methods based on

both �in-camera speci�c�, �blind� and �data-driven� features, then, in Sec-
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tion 1.2, we describe the co-occurrence based one proposed in [16] and the

CNN used in [17]. Experimental analysis on the Dresden Image Database,

is carried out in Section 1.4 considering various scenarios of interest. Fi-

nally, in Section 1.5 we show the application of model identi�cation in the

context of as iris sensor model recognition.

1.1 Related work

For solving the problem of camera model identi�cation, two di�erent

approaches were used. The �rst try to exploit the artifacts related to

speci�c in-camera processing steps, using hand-crafted features. The sec-

ond approach uses blind-features, sometimes borrowed by other �elds, for

solving the camera model identi�cation task.

Model-based artifacts were recognized also in early research on PRNU-

based identi�cation [3], during the PRNU pattern estimation, and used

to identify the camera model. This path has been followed later also by

other researchers with di�erent type of features [11, 18]. In [19], inspired

by the work of Popescu and Farid on image forgery detection [20], traces

of di�erent interpolation algorithms where sought and used as distinctive

model features. In fact, interpolation algorithms modify in speci�c ways,

both in space and across color channels, the natural correlation between

each pixel and its neighbors. Therefore, the weights of the interpolation

kernel, once estimated, can be used as features for camera identi�cation.

Often, they are combined with frequency domain features, that take into

account the periodic artifacts caused by the color �lter array (CFA) pat-

tern. The strong dependencies among pixels has been also explored in

[21] and [22]. In [21], in particular, as also in [23], weight estimation is

conducted locally on each color band using a content-adaptive procedure

for each region. This re�ects the fact that, often, adaptive demosaicing

techniques are used inside the camera to reduce blurring artifacts. In [22],
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instead, partial second-order derivative correlation models are proposed to

detect both the intra-channel and the cross-channel dependencies due to

demosaicing. Other methods aim at characterizing JPEG compression ar-

tifacts [24], DCT coe�cients statistics [25], or lens distortion artifacts like

chromatic aberration [26]. A di�erent approach is proposed in [27] where

identi�cation is based on a two-parameter heteroscedastic noise model valid

for raw images.

Kharrazi et al. [28] in 2004 considered the use of generic features for

camera identi�cation. This was one of the �rst papers to present an ap-

proach that did not focus on a speci�c camera artifact, but tried to capture

the underlying variations between camera models based on statistics of var-

ious orders. The authors propose to use several global statistics, extracted

from each individual color band, based on the correlation of couples of

color bands, and also extracted from some wavelet subbands. In addition,

some Image Quality Metrics (IQM), previously used in [29] for steganaly-

sis, are evaluated on all the color bands, both in the spatial and transform

domain. It is important to underline that these last features are computed

on residual images (high-pass �ltered versions of the original data). These

features have shown good performance also for cell phone identi�cation

tested with both images and videos [30].

Image residuals are used by the majority of methods proposed in the

literature. The reason is that in this way results become independent

of the image content, hence artifacts are more easily detected. In [31]

IQM features are extracted from high-pass residuals of each color band.

These features are then combined with BSM (Binary Similarity Measures),

i.e., LBP (Local Binary Pattern) [32] extracted from the least-signi�cant

bit planes, and with an enlarged set of features computed in the wavelet

domain. Besides the features used in [28], other �rst-order statistics are

computed, as well as some inter-band correlation indexes inspired by [33].

In order to improve performance Gloe [34] proposes to add some color
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features to those used in [28]. E�ectively, experiments on the Dresden

Image Database prove this combination to guarantee a performance gain

w.r.t. both [28] and [31].

Most of the above described features are evaluated globally on the

whole image (both original and high-pass �ltered) or on a decimated ver-

sion of it, if wavelet subbands are considered. However, in order to capture

subtle image patterns which may correspond to discriminative features, it

is important to consider local features, extracted from a small neighbor-

hood of each pixel of the image. This idea inspires the work in [35] where

LBP features are evaluated both on the original image and on some resid-

uals. A similar approach is followed recently also in [36]. Note that in [35]

LBP is computed on two-pixel supports, and hence encodes only �rst-order

spatial variations. Computing it after a preliminary high-pass �ltering, as

done in [37], is instead equivalent to use a larger support and evaluate

higher-order statistics. A di�erent approach looks for the statistical di�er-

ences in the DCT domain by computing Markovian transition probabilities

[38].

Recently, the promising performance obtained in various computer vi-

sion tasks with the use of deep learning inspired various work on model

identi�cation using CNNs [14, 15]. In [15], using a deep learning approach,

the authors train a multi-class CNN for extracting discriminant feature for

model identi�cation followed by an SVM trained using patches extracted

from training images.

1.2 Proposed approaches

In this section we explain in detail the two kind of approaches pro-

posed for camera model identi�cation. A blind local feature, based on

co-occurrence of image residuals, are �rst described. Then a data-driven

and deep learning approaches using CNN is presented.
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1.3 Co-occurrence based local features

The analysis of the state of the art shows that local descriptors can

provide precious clues for camera model identi�cation. Moreover, since

such clues, related to the camera processing chain, are contained in the

image micro-patterns and not in the scene content, it makes sense to re-

move the latter and work on image residuals. Even in this framework,

however, two main open issues remain about i) how to extract informative

image residuals and ii) how to process them in order to obtain an ex-

pressive camera-related feature. Given the complexity and the variety of

the in-camera processes involved, no conclusive answer can be hoped for.

However, we will show that co-occurrence based local features, computed

on image residuals, and originally proposed in [10] for steganalysis, may

represent a valuable tool for this task. A similar path was successfully used

in digital image forensics [39] [9] [40].

The feature vector associated with the image under test is extracted

by means of the following steps:

� computation of residuals through high-pass �ltering;

� quantization and truncation of the residuals;

� computation of the histogram of co-occurrences.

In [10] a number of linear and non-linear high-pass �lters have been

used for the computation of residuals, and all resulting feature vectors

have been combined by means of an ensemble classi�er. In [12], instead,

inspired also by [40], only a few �lters have been selected for the model

identi�cation purpose, after a preliminary performance analysis on the

training set. In both cases, the input was a gray-scale image, obtained by

suitably combining the three color components. Individual color channels,

however, are involved in all in-camera processes, and may contribute more
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information than their combination. Hence, it makes sense computing co-

occurrences based on these richer sources, provided that enough data are

available to carry out reliable estimates.

With this aim, we consider the color-aware features proposed in [41]

and [42]. In both cases, image residuals are computed separately for each

color channel, while di�erences arise concerning which co-occurrences are

taken into account. In [41] each color band is processed individually, hence

only spatial co-occurrences are considered. Several co-occurrence matrices

are computed, one for each color channel and each spatial direction, and

they are eventually merged in a single feature vector. In [42], instead,

only inter-channel co-occurrences are computed, taking also into account

the Bayer CFA con�guration of the image. Therefore, we considered both

approaches, and performed some preliminary tests in order to select the

best solution. It turned out that, for the model identi�cation problem,

processing the color channels independently from one another provides

better and more stable results, so we consider the approach of [41] in the

following.

Filter names are built as in [10] to re�ect their main characteristics,

that is

name = s{order}_{type}{f}{σ}{scan} (1.1)

where order is the �lter order, the type can be linear, called spam, or min-

max, with the latter case meaning the the output of multiple �lters are

combined through nonlinear min and max operations, f is the number of

�lters used, σ a symmetry index (indicating the number of di�erent resid-

uals that can be obtained by image rotation or mirroring), and scan may

be h (horizontal), v (vertical) or missing (this accounts for hv-symmetrical

residuals). As already said, after some experiments, we focused on a small

number of �lters, i.e., linear �lters of the second and third order and a

minmax �lter based on the output of multiple second order �lters. Let us
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focus for the moment on the second order �lter, s2_spam12hv, de�ned by

rhi,j = xi,j−1 − 2xi,j + xi,j+1 (1.2)

where x represents a generic color band of the input image (red, green or

blue), and rh the corresponding residual image, with the superscript h in-

dicating the scanning direction. A similar de�nition applies, with obvious

changes, for rvi,j . However, by symmetry, rh and the transpose or rv have

the same statistics, so they are concatenated in a single residual image r,

thus augmenting the data for co-occurrence computation. In order to ob-

tain manageable co-occurrence matrices, residuals are quantized/truncated

to a small number of values as:

r̂i,j = truncT (round(ri,j/q)) (1.3)

with q the quantization step and T the truncation value, which in this

work are set to q = 1 and T = 2, respectively. The co-occurrences are

computed on four pixels in a row aligned along the horizontal (along �lter)

and vertical (cross �lter) directions

Ch(k0, k1, k2, k3) =
∑
i,j

I(r̂i,j = k0, r̂i,j+1 = k1, r̂i,j+2 = k2, r̂i,j+3 = k3)

(1.4)

Cv(k0, k1, k2, k3) =
∑
i,j

I(r̂i,j = k0, r̂i+1,j = k1, r̂i+2,j = k2, r̂i+3,j = k3)

(1.5)

where I(A) is the indicator function of event A, equal to 1 if A holds and

0 otherwise.

With the selected parameters, each of these matrices have 625 entries,

which are reduced to 313 by symmetry. Considering the three color chan-

nels, the f a fully manageabinal s2_spam12hv feature vector obtained
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through concatenation has 3×2×313=1878 components,le length for the

typical size of modern images.

The same processing steps are used to extract features based on other

�lters, with only minor changes. Actually, when the third order �lter,

s3_spam14hv, is considered, de�ned as

rhi,j = xi,j−1 − 3xi,j + 3xi,j+1 − xi,j+2 (1.6)

no modi�cation to the process is necessary, and the only observable di�er-

ence will be in the eventual performance.

On the contrary, the third features we consider, s2_minmax32, require

some further considerations. The min residual image rmin is computed

by taking, at each pixel, the minimum output of four linear �lters (of

the second order in our case) operating along rows, columns and the two

diagonals (main, md, and anti, ad)

rmin
i,j = min(rhi,j , r

v
i,j , r

md
i,j , r

ad
i,j) (1.7)

A similar de�nition applies to rmax, where the maximum instead of the

minimum is taken. Due to directional symmetry, only two co-occurrence

matrices need be computed, one for rmin and one for rmax, which are

eventually merged. After concatenating the three color-band matrices,

the �nal feature vector has 3×625=1875 components. In all cases, the

extracted features are eventually used to train an SVM linear classi�er.

1.3.1 CNN for model identi�cation

The architecture of the network proposed for the identi�cation is de-

scribed in detail in Fig. 1.1. It is an adapted and reduced version of the

AlexNet [43]. Moreover, for keeping low the number of parameters, the

computational complexity (both in training and testing phases) and the
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Convolutional layers (feature extraction) Classification layers
(Fully connected layers)

conv1 
kernel: 7x7
stride: 1

pool1
kernel: 4x4
stride: 2

conv2
kernel: 5x5
stride: 1

pool2
kernel: 3x3
stride: 1

conv3
kernel: 3x3
stride: 1

pool3
kernel: 2x2
stride: 1 fc1 fc2 fc3

+ + +

Feature maps: 8 Feature maps: 16 Feature maps: 32

Figure 1.1. The proposed CNN architecture

memory required. It is made up of three convolutional layers for feature

extraction followed by three fully connected layers for the classi�cation.

All the convolutional layers are made up of a convolution, followed

by the activation function and a pooling operation. We use the Recti�ed

Linear Units (ReLUs) as non-linearity activation function and the max

function as pooling. The chosen convolutional layers has a decreasing ker-

nel size for both the convolutional and pooling, while an increasing feature

map size. The �rst layer is made up of a convolution with a kernel 7× 7

and a pooling of 4×4, that produces 8 feature maps of the selected patch

of the original iris image. The second layer is composed by a convolution

with a kernel of 5×5 and a pooling of a kernel 3×3 that produces 16 feature
maps. Finally, the third layer with a convolution with a kernel 3× 3 and

a pooling of 2× 2 produces the �nal image representation of 32 features

map.

The fully-connected layers fc1 and fc2 have 1024 and 2048 neurons

respectively and ReLUs as activation function. The last fully connected

layer (fc3 ) has the same number of neurons of the available models in the

dataset, and, �nally, a softmax function is used for classi�cation.
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1.4 Experimental results

In order to assess the performance of the described feature for cam-

era model identi�cation, we carried out a number of experiments on two

di�erent kind of images: natural images and biometrics sensor one. For

the �rst, we will use the well-known Dresden Image Database [44]. In the

�rst part of the experimental analysis we show the comparison of various

blind feature-based proposed for camera identi�cation analysing the per-

formance at various level of knowledge. Then, we show the performance

gain given by the use of CNN on model identi�cation. For the biometrics

sensor images, we will use a collection of Iris sensor images. In the analysis,

we will show that the features used for natural images perform very good

on biometrics sensor, and will use a CNN-based approach proposed by us

in [17] for iris sensor.

1.4.1 Datasets

1.4.1.1 Natural images

The Dresden Dataset is one of the most widespread database in the

forensics �eld, used in many recent papers. As shown in Table 1.1, 26 dif-

ferent camera models are available, often with several individual devices,

and several hundred photos. A limited set of scenes is selected, and por-

trayed over and over across di�erent models, devices and settings. This is

unique characteristic of the Dresden Image Database, which makes it espe-

cially suitable for the model identi�cation problem, as it frees experimental

results from the randomness due to varying image content.

1.4.1.2 Iris images

For evaluating the performance, we consider some publicly available

iris databases. Since there is not one single database explicitly made for
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Make Model #Devices Images size #images

Agfa DC-504 1 4032 x 3024 169
Agfa DC-733s 1 3072 x 2304 278
Agfa DC-830i 1 3264 x 2448 363
Agfa Sensor505-X 1 2592 x 1944 172
Agfa Sensor530s 1 4032 x 3024 372
Canon Ixus 55 1 2592 x 1944 224
Canon Ixus 70 3 3072 x 2304 567
Canon PowerShot A640 1 3648 x 2736 188
Casio EX-Z150 5 3264 x 2448 924
Kodak M1063 5 3664 x 2748 2391
Nikon CoolPix S710 5 4352 x 3264 925
Nikon D200 2 3872 x 2592 752
Nikon D70/D70s 2/2 3008 x 2000 736
Olympus µ1050SW 5 3648 x 2736 1040
Panasonic DMC-FZ50 3 3648 x 2736 931
Pentax Optio A40 4 4000 x 3000 638
Pentax Optio W60 1 3648 x 2736 192
Pratika DCZ5.9 5 2560 x 1920 1019
Ricoh GX100 5 3648 x 2736 854
Rollei RCP-7325XS 3 3072 x 2304 589
Samsung L74wide 3 3072 x 2304 686
Samsung NV15 3 3648 x 2736 645
Sony DSC-H50 2 3456 x 2592 541
Sony DSC-T77 4 3648 x 2736 725
Sony DSC-W170 2 3648 x 2736 405

Σ 25 74 16956

Table 1.1. Digital camera models used in our experiment, all cameras are
taken from Dresden Image Database.

the model identi�cation task, with various models and vendors, we built a

dataset by merging all or parts of the model from each selected database.

In Table 1.2, we report the nine models used and the four original

databases from which they come, as well as the number of images and

their size. In Figure 4, we show some images coming from di�erent sensor

models. In the following we recall some of the characteristics of the four

considered databases.
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The ATVS-FIr DB1 is an iris dataset from the ATVS Biometric Recog-

nition Group. It was �rst made for liveness detection since it contains both

real and fake examples form LG Iris Access EOU3000.

The CASIA-IRISV2 and CASIA-IRISV42 are provided by the biomet-

rics research at Center for Biometrics and Security Research (CBSR), Na-

tional Laboratory of Pattern Recognition (NLPR), Institute of Automa-

tion, Chinese Academy of Sciences (CASIA). The CASIA-IRISV2 includes

two di�erent devices the Irispass-h, developed by OKI and a self-developed

device, named CASIA-IrisCamV2, while the CASIA-IRISV4 is collected

by using a Irispass-h sensor and IKEMB-100 dual-eye iris camera produced

by IrisKing.

IIIT-D CLI database3 [45, 46] is provided by Image Analysis and Bio-

metrics Lab of the IIIT, Delhi. Iris images were captured by using two iris

sensors: the Cogent CIS 202 dual iris sensor and the VistaFA2E single iris

sensor.

The Notre Dame Iris Cosmetic Contact Lenses dataset4 [47], is provided

by the Computer Vision Research Laboratory (CVRL) of the university

of Notre Dame. This database contains iris images acquired by using an

LG4000, an LG4100 and an IrisGuard AD100 iris sensor.

1.4.2 Experiments on natural images

In order to take into account a wide range of scenarios that might

occur in real-world forensic applications, our camera identi�cation tests

are performed under various hypotheses:

� Perfect knowledge: there is a �nite set of camera models (for

example the 26 models of the Dresden Image Database) and we have

1http://atvs.ii.uam.es/�r_db.html
2CASIA Iris Image Database, http://biometrics.idealtest.org/
3http://www.iab-rubric.org/resources.html
4https://sites.google.com/a/nd.edu/public-cvrl/data-sets
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(a) LG EOU3000 (b) IKEMB 100 (c) Irispass-h (d) CASIA IrisCamV2

(e) Vista Scanner (f) Cogent Scanner (g) LG4000 (h) AD100

Figure 1.2. Samples of iris images coming from di�erent sensors of our
dataset.

full knowledge about each of them. In practice, for each model we

have a number of training images large enough to carry out reliable

estimates of all the features of interest. Therefore, we can use a

multiclass-SVM and will be able to compute a full confusion matrix.

� Limited knowledge: we have full knowledge on the target model,

but know nothing about the number and features of other models.

Practically, we have a large number of training images, classi�ed as

either belonging to the target model or another (unknown) model.

Here, we can use only a one-class SVM, and will evaluate performance

in terms of precision and recall.

� Zero knowledge: in this case we have no prior information on the

number and features of camera models involved. There are only

a large number of images, each with the associated feature. In this

case, one can only hope to retrieve other images taken from the same

model, which may help for subsequent investigations. Therefore, we

will �nd the K nearest neighbors (NNs) to the target, and report on

the precision@K, that is, the fraction of images that come from the
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same model as the target among the �rst K retrieved NNs.

In the de�nition of the selected co-occurrence feature, we have left open

the choice of the high-pass �lter used to compute image residuals. Indeed,

preliminary experiments show the performance to depend weakly on the

speci�c �lter. In any case, we will provide results for those that performed

best in these tests, the s2_minmax_32 and s2_spam12hv, always with

all the color components. In addition, we will provide results also for

the s2_spam14hv �lter, to allow comparison with the grayscale version

used in our previous work [12]. Instead, we will not consider the use of

denoising �lters to compute residuals, since they increase signi�cantly the

computational complexity while not improving performance [12]. Finally,

we implemented also the features proposed in Celiktutan-2008 [31], Gloe-

2012 [34] and Xu-2012 [35]. Whenever possible, they are used as references

for performance comparison. The data-driven approaches are compared in

a dedicated section of perfect knowledge scenario while are not suitable for

others where a full labeled dataset is not available.

1.4.2.1 Perfect knowledge case

Here, we assume to have a �nite number of camera models, with an

adequate number of training images for each model. Therefore, we train

a multiclass-SVM with linear kernel, using 100 images for each camera

model as training set, while all other images are used to test performance.

When multiple devices are available for a single model, which holds in the

majority of cases, all training images come from the same device, and no

test images from the same device are used. Otherwise, training and test

images come necessarily from the same device. We run this procedure

20 times, choosing each time at random the devices used for training.

Eventually, results are averaged on all runs.

Results are reported in Table 1.3. The upper part of the table is for
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Feature length accuracy acc. w/crop

Celiktutan-2008 592 89.64 53.08
Gloe-2012 82 92.51 65.85
Xu-2012 354 98.15 94.59

s3_spam14hv (grayscale) 338 96.92 93.38
s3_spam14hv (color) 1878 97.21 93.85
s2_spam12hv (color) 1878 98.52 96.26
s2_minmax32 (color) 1875 98.72 95.70
s2_minmax32 (color) 1000 98.56 96.27

s2_minmax32 (color) 500 98.47 96.14

Table 1.3. Performance of various descriptors on the Dresden Image
Database for whole images and for 512×512 crops.

reference methods, while the lower part concerns various versions of the

features based on co-occurrences. The second column reports the feature

length, while accuracy results are reported in column 3. All co-occurrence

features perform very well, with the s2_minmax32 on all color bands,

reaching almost 99% accuracy. Di�erences, however, are quite limited,

speaking in favor of the approach independently of implementation de-

tails. Even the simpler grayscale feature (the best in [12]) grants a 97%

accuracy. The best feature keeps working very well even after applying

feature selection, with an algorithm based on Fisher score [48], and reduc-

ing the number of components to 1000 and 500 (last two rows of Table

1.3). It must be said that also some reference methods provide very good

results, in particular Xu-2012.

In Table 1.3 we also report results computed on small crops taken from

the images, i.e., 512×512 pixel sections which account for less than 5% of

the whole image, on average. The co-occurrence features keep being highly

reliable, with a performance loss of 2-3 percent points, while for all refer-

ence features the performance impairs more signi�cantly, and dramatically

so for Celiktutan-2008 and Gloe-2012.

Table 1.4 provides the full confusion matrix for the s2_minmax_32
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feature. In the vast majority of cases the performance is perfect or near-

perfect. Let us focus on the exceptions. There is a clear problem with

some Sony models (DSC-H50 and DSC-W170): presumably, coming from

the same manufacturer, they use the very same in-camera processing suite.

The same considerations hold for the Canon Ixus55 and Ixus70, where,

however, the problem is much more serious. Another critical case is the

Nikon D200, which has been found relatively hard to identify also in other

investigations, including [34], which raises interest on the in-camera pro-

cesses it adopts.

In Table 1.5 we perform identi�cation using JPEG compressed images.

Indeed, uncompressed images are more the exception than the rule in the

real world. Very often, images are JPEG compressed before being used,

e.g., posted on a website or circulated on a social network. Therefore, it

makes sense to repeat the identi�cation experiment including compression,

taking advantage of the fact that the compression quality factor (QF) can

be easily estimated from the image itself. We therefore JPEG compress

the whole dataset at the same QF, choosing QF=90, 75 and 60 to consider

compression at various qualities, and repeat the very same identi�cation

experiment described before. As with the cropped images, we observe a

very graceful degradation of performance as the QF decreases, with an

accuracy close to 90% even at QF=60, for the best co-occurrence feature.

Again, reference features present a sharper impairment of performance,

and some of them are clearly unreliable with compressed images.

It is worth emphasizing again that in the above experiment the classi-

�er is trained on images that are all JPEG compressed with the same QF

as the target. Therefore, no information is provided on the robustness of

features, but only on their versatility. On the other hand, robustness is cer-

tainly a desirable property, worth investigating. To this end we carried out

a further experiment in which the target image is either compressed, at var-

ious quality factors QF, or resized, at various scales s, while the classi�er is
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accuracy
Feature length uncomp. QF = 90 QF = 75 QF = 60

Celiktutan-2008 592 89.64 83.15 71.23 63.87
Gloe-2012 82 92.51 79.63 74.31 68.48
Xu-2012 354 98.15 94.85 88.91 82.90

s3_spam14hv (grayscale) 338 96.92 94.63 91.18 85.98
s3_spam14hv (color) 1868 97.21 95.84 93.06 88.22
s2_spam12hv (color) 1878 98.52 96.86 93.20 87.92
s2_minmax32 (color) 1875 98.72 97.34 94.38 89.25

s2_minmax32 (color) 1000 98.56 97.33 93.56 87.69
s2_minmax32 (color) 500 98.47 96.89 91.42 83.64

Table 1.5. Performance of various descriptors on the Dresden Image
Database for uncompressed and JPEG compressed images at various QFs.

trained on the full quality images. The results, reported in Table 1.6, leave

little room for interpretation. As soon as a mild compression (QF=90) or a

moderate resizing (scale=90%) are applied the performance drops dramat-

ically, becoming close to random guessing when more intense processing is

applied. Such a behavior can be easily explained for co-occurrence based

features, because they analyze micro-patterns in the image residual, which

are certainly altered by compression and resampling. Even so, these feature

show a higher (although always low) robustness w.r.t. most references.

1.4.2.2 Limited knowledge case

In the perfect knowledge case considered before a small universe of

models is postulated. However, in the real world, a very large and steadily

growing number of models is available. Accounting for all of them might be

di�cult, and certainly involves the managing of a very large image dataset

with the corresponding storage and computational complexity problems.

If also various forms of common processing are considered, the problem

becomes soon unmanageable. Moreover, adding new models, requires in-

tense work to update the classi�er. Besides these practical problems, the
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accuracy
Feature length original QF=90 QF=60 s=90 s=50

Celiktutan-2008 592 89.64 25.88 11.27 35.43 6.54
Gloe-2012 82 92.51 27.85 18.80 17.15 6.72
Xu-2012 354 98.15 35.86 12.40 39.39 9.31

s3_spam14hv (grayscale) 338 96.92 24.42 10.48 39.85 8.21
s3_spam14hv (color) 1868 97.21 33.75 12.68 53.09 10.58
s2_spam12hv (color) 1878 98.52 34.96 16.26 43.07 12.36
s2_minmax32 (color) 1875 98.72 40.48 14.06 40.76 12.23

Table 1.6. Robustness of various descriptors on the Dresden Image
Database w.r.t. compression and resizing.

multiclass approach, very appealing with a small number of classes, tends

to become less and less reliable as the number of classes grows. In addi-

tion, forcing the target image to be associated with one of the available

models gives rise to errors when the image comes instead from a di�erent

source. This is potentially dangerous, and plain unacceptable in many

forensic applications.

Therefore, it makes full sense to consider an alternative scenario in

which the prior knowledge is limited to just one camera model, and we

test the H1 hypothesis that the target image �ts such a model against

the null hypothesis, H0, that it does not. Indeed, this approach was also

explored in [34] in a similar setting. To gain insight into the importance

of this case, consider an investigator looking in a large dataset for all the

photos taken by the camera of a person of interests. By carrying out

one-class model veri�cation, most of (possibly all) the photos taken by

the camera model of interest can be readily singled out, restricting and

eventually speeding-up the search.

In our experiment, for each camera model of the Dresden Image Database

we trained a one-class SVM using 100 training images coming from cam-

eras of that model. All remaining images, both from the same model and
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precision recall accuracy

original image 84.50 68.76 98.46
512×512 crop 76.10 67.60 97.99
JPEG QF=75 62.45 53.32 96.03

Table 1.7. Performance in the limited knowledge case for the s2 minmax32

(color) feature.

from other models, are then used as test set. Relevant parameters are

kept �xed for all models. Results are reported in Table 1.7, only for the

best feature, in terms of accuracy, precision and recall, as usual for these

kinds of decision problems. They are computed for each camera model,

and eventually averaged on all of them.

Working on uncropped and uncompressed images, precision and recall

are pretty good but certainly not perfect, with over 30% of the images of

interest that go undetected, and about a 15% of false positives. To gain

insight on this latter result, however, consider that our test set is highly

unbalanced, with most images taken by cameras of other models. In these

conditions, having only 15% of false positives is actually quite remarkable.

This is also re�ected by the very high overall accuracy. Instead, a 30%

of misses might be a problem in some cases. Of course, depending on

the application of interest, one can modify the classi�cation threshold to

improve recall, for example, at the expense of precision. Turning to images

that are either cropped (to 512×512 pixels) or JPEG compressed (with QF

75) we observe (last two lines of the table) a slight decrease in performance

in the �rst case, which becomes more signi�cant in the second one.

Table 1.8 reports results obtained in the same conditions as before

but using feature selection to reduce the components from 1875 to 500.

The performance does not change much when uncompressed images are

considered, either complete or cropped, with minor shifts between precision
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precision recall accuracy

original image 92.38 64.08 98.50
512×512 crop 73.23 73.32 98.06
JPEG QF=75 50.28 42.28 95.25

Table 1.8. Performance in the limited knowledge case for the s2 minmax32

(color) feature with feature selection (500 instead of 1875 components).

and recall. On the contrary, the e�ect is signi�cant on JPEG compressed

images, with recall going below 50% and precision just above.

1.4.2.3 Zero knowledge case

We conclude this analysis by considering the situation in which we have

no clue on the camera used to take the photo of interest, but still want to

retrieve some useful information from the available large dataset of images.

In practice, the only action possible, based on the extracted feature, is to

retrieve other images that share a very similar feature, thus reducing the

search space to images presumably originated by cameras of the same

model, see �gure 1. Clearly, this is not a model identi�cation problem

anymore, but this experiment sheds further light on the expressivity of the

selected feature.

In detail, we use the feature extracted from the available image as a

query, and look for the K nearest neighbors features in the dataset, using

a kd-tree based search algorithm. The performance is measured by the

precision@K, the percentage of hits over the �rst K nearest neighbors,

considering as hits all images that belong to the same model as the query,

and averaging results over all images of the dataset used in turn as queries.

For the by now usual s2_minmax32 (color) feature we observe 81.00%

hits over the top 10 neighbors (K=10), which decreases to 70.68% for

K=20, 55.77% for K=50, and 44.16% for K=100 (1.9). Experiment on



30 CHAPTER 1. LEARNING-BASED SOURCE IDENTIFICATION

Query image model

Other models

Top-k nearest 
neighbors

Query Image

Figure 1.3. In the absence of prior knowledge, the co-occurrence extracted
from the target image can be used to query the dataset and retrieve photos
taken by the same camera model.

accuracy
Feature length MAP@10 MAP@20 MAP@50 MAP@100

Celiktutan-2008 592 45.50 35.88 26.42 21.17
Gloe-2012 82 36.78 29.39 22.43 18.32
Xu-2012 354 83.03 72.92 59.11 49.29
LBP256_color_f33 768 86.08 79.39 69.47 60.66

s3_spam14hv 338 84.09 75.37 62.59 51.93
s3_spam14hv(color) 1868 82.95 73.83 60.60 49.96
s2_spam12hv(color) 1878 85.17 76.32 63.01 51.85
s2_minmax32(color) 1875 81.00 70.68 55.77 44.16

Table 1.9. Mean average precision of various descriptors on the Dresden
Dataset for original images, in the zero knowledge scenario using a kd-tree
search algorithm.

compressed images are also reported in Fig.1.10. However limited, this

experiment shows clearly that the co-occurrence feature allows one to re-

trieve a large number of images taken from the same model as the query.

Of course, if the retrieved images have camera information attached with

them, this would again allow for an indirect identi�cation.
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accuracy
Feature length MAP@10 MAP@20 MAP@50 MAP@100

Celiktutan-2008 592 30.12 24.71 18.32 15.37
Gloe-2012 82 28.26 22.15 17.26 14.54
Xu-2012 354 55.34 42.21 29.91 23.59
LBP256_color_f33 768 48.74 37.72 27.33 21.75

s3_spam14hv 338 52.00 40.11 28.82 22.78
s3_spam14hv(color) 1868 52.96 40.92 29.48 23.47
s2_spam12hv(color) 1878 54.58 42.28 30.42 24.00
s2_minmax32(color) 1875 47.23 35.89 25.67 20.38

Table 1.10. Mean average precision of various descriptors on the Dresden
Dataset for JPEG compressed images at QF=75, in the zero knowledge
scenario using a kd-tree search algorithm.

1.4.2.4 Comparison with CNN-based feature

In this section we show the experiment performed on Dresden dataset in

perfect knowledge scenario with the use of CNN-based approach proposed.

We compare the results with the CNN in [15], that use a CNN followed

by an SVM pipeline for the camera model identi�cation. The comparison

is performed respect to the two state-of-the-art methods that performs

better: our proposed best feature s2_minmax32 working on color images,

and LBP based feature proposed by Xu [35]. Since, to train a CNN we need

both a train and a test set, only a perfect knowledge scenario is considered.

Is worth to note that our proposed network works on grayscale images

while all the comparison method exploit the full color images.

The comparison highlights that CNN-based methods outperform both

[12] than [35] approaches on small of size 64× 64,128× 128 and 256× 256,

patches. The best CNN method in classifying single image patches give

an overall accuracy over 93% even using only a 64 × 64 patch where the

performance of blind features decrease signi�cantly. Our proposed method

do not perform better than one in [15] but still gives comparable result
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Feature 64 × 64 128 × 128 256 × 256 Full

Xu-2012 54.53 76.64 89.01 98.15
Bondi-2017 92.82 � � �

Proposed co-occurence (color) 67.21 84.17 91.21 98.72
Proposed CNN 91.63 93.15 94.15 �

Table 1.11. Performance of CNN-based descriptors on the Dresden Image
Database for di�erent size of crops.

even using a simpler net.

1.4.3 Experiments on iris sensor images

In this section we show that the model identi�cation approaches work

even on images taken in di�erent contest, such as images coming from

iris sensor. The importance of having a good camera model identi�cation

method for iris sensor is �rst assessed in [49], where the interoperability

problem of iris sensor in the same system is explicitly decoupled in its

two basic components, namely, i) identifying sensor models, and ii) map-

ping images, or extracted features, from one sensor to the other. In [49] the

model identi�cation relies on some global features computed in the wavelet

domain, including selected means, variances and entropies. To take into

account technological constraints, the relatively small architecture pro-

posed is used, thus limiting both computational complexity and memory

requirements. Moreover, transfer learning is used to speed-up training and

reduce the training set size. Here we report only the experimental results

and the comparison made in the original paper [17].

Experiments performed on a large number of iris images coming from

di�erent databases prove that the proposed solution improve model iden-

ti�cation performance with respect to the reference methods. Moreover,

even if not reported is worth to note that keeping the structure of the iris

recognition system proposed in [49], the more reliable identi�cation step
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Figure 1.4. Iris images captured by di�erent sensors and at di�erent dis-
tances. The �rst and the second row are iris images captured by di�erent
sensors. Images in the �rst row are acquired by the Cogent dual iris sensor,
images in the second rows are acquired by the VistaFA2E sensor. In the �rst
two rows, images of the same columns belong to the same subject.

impacts on the overall performance of the biometric recognition system,

so improving sensor interoperability.

1.4.3.1 Iris model identi�cation results

The iris model identi�cation approaches are evaluated by using all the

nine iris sensor models described in the previous Section. In particular, 900

samples were randomly selected from the database of each model, in order

to have a dataset with the same number of images per model, made up by

a total of 8100 iris images. 60% of this dataset was used as training set and

the remaining 40% for testing, taking care of selecting iris classes (subjects)

in the test set di�erent from those present in the training set. In order to

better train the CNN architecture proposed and the reference [15] a data

augmentation was performed, by extracting 9 patches from the center of

each image in the original training set, as illustrated in Fig. 1.5. Three

di�erent sizes of the patches have been considered, namely 256×256 pixels,

128×128 pixels and 64×64 pixels. Moreover, two di�erent training settings

have been considered for our proposal. In the �rst one (training form
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Feature 64 × 64 128 × 128 256 × 256 Full

Arora-2012 � � � 91.80
Xu-2012 91.73 93.81 97.21 99.04
Bondi-2017 94.14 � � �

Proposed co-occurence (grayscale) 92.49 94.54 96.43 98.75
Proposed CNN (from scratch) 95.08 98.13 99.29 �
Proposed CNN (�netuning) 97.18 98.57 99.35 �

Table 1.12. Results of di�erent model identi�cation approaches on the test
set by varying the size of input images.

scratch) the CNN is trained anew on the training data; in the second one

(Dresden �netuning) a net pre-trained on images coming from the Dresden

database [44] was used. Results of the proposed CNN-based architectures

are reported in table 1.12 together with those obtainable by the approach

presented in [49], and by using a SVM classi�er with a linear kernel on

features extracted according to the approaches proposed in [35] and [16].

It is worth noting that while the features used by the approaches under

comparison have been extracted from the whole iris images, in case of

our CNN-base architectures, we considered crops of the images relative to

256 × 256 pixels, 128 × 128 pixels and 64 × 64 pixels. In order to have a

fairer comparison, we also report the results obtained by using the features

proposed in [35] and [16] extracted on crops of the same size. As regards

the approach proposed in [49], it must be observed that it cannot perform

well on crops coming from the original images. The CNN proposed by [15]

is shown only for patch of size 64× 64 as in the original paper.

As it is evident from table 1.12, the CNN-based approach that use

256×256 pixels crops perform better than the comparing approaches. The

improvement with respect to the approach presented in [49] is also statis-

tically signi�cant. When small crops are used for training, the Dresden

�netuning version of the CNN is able to outperform the training-from-

the-scratch one. In this case the improvement with respect to the other
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1 2 3

4 5 6

7 8 9

Figure 1.5. Example of cropping iris images for data augumentation. In
this case we obtain nine 128x128 non-overlapping patches. Note that in case
of bigger crops the patches can overlap each other.

feature-based approaches that use images of the same size for training also

becomes signi�cant. Unlike the results obtained for natural images, here

the CNN proposed in [15], do not perform better. One of the reason could

be the size of dataset, that is smaller than before and is not suitable for

training such a bigger net.

Table 1.13 shows the confusion matrix relative to the best result ob-

tained by the proposed CNN-based architectures. Images coming from 6

models out of 9 are perfectly recognized, while the most part of errors

are due to misrecognitions between two very similar models coming from

the same vendor (LG4000 and LG 4100), so con�rming the validity of the

proposed approach.
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Chapter 2
Blind source clustering

In blind source identi�cation scenario, there is no prior information on

the number and kind of possible devices involved. The analyst is given only

a number of images, with no useful metadata attached with them, which

might or might not be related with one another. In this scenario, classical

identi�cation is not viable anymore. Nonetheless, it may be important

to understand which images come from the same camera, and which are

not. Lacking any other clues, useful information may be extracted only

through image clustering. In fact, if the images have been taken by just a

few cameras, they can be clustered according to their common unknown

source. Besides linking photos with one another, clustering allows one

to estimate some important features of the unknown cameras, like their

PRNU, which can be used to identify new images coming from di�erent

repositories.

A few examples may provide some insight into the importance of this

task. Once gained access to a hard disk with child abuse images, investi-

gators may use blind clustering to estimate the number of devices used to

take the photos and their �ngerprints. These may allow one to trace back,

by further analyses, all authors of the photos. On a larger scale, law en-

37
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forcement agencies may download a large number of such images from the

net, and use blind clustering followed by �ngerprint estimation to build a

database of PRNU patterns to use in future investigations or even in court.

With reference to this last task, a growing number of papers pursue user

identi�cation or image-to-identity linking over social networks [50, 51, 52].

Correlation clustering (CC) is a recently proposed method for data par-

titioning. Given a suitable measure of data similarity (correlation), the

optimal partition is obtained by solving a constrained energy minimiza-

tion problem. Integer linear programming tools ensure fast computation.

Like all clustering algorithms, CC depends critically on the sensible set-

ting of some parameters. In order to overcome this need, we use consensus

clustering [53, 54] to extract a unique solution which aggregates a num-

ber of base CC clusterings. As a result of these steps, we obtain a �rst

conservative partition, characterized by a very low probability of �nding

unrelated residuals in the same cluster. Then we proceed with an ad hoc

re�nement algorithm which iteratively merges clusters. As the algorithm

proceeds, larger and larger clusters emerge, leading in turn to better esti-

mates of the corresponding PRNUs, and allowing the inclusion of further

small clusters and outliers, until a suitable stopping condition is met. We

already proposed the use of correlation clustering and cluster re�nement in

our recent work [55]. However, in that algorithm some key parameters had

to be set by the user based on preliminary analyses on a suitable training

set. This is a nuisance for the user and a source of impairment related to

estimation errors. In this thesis, I show my work presented in [56] that

modify substantially the algorithm of [55] by i) introducing the consen-

sus clustering step, and ii) adopting a new parameter-free probabilistic

merging criterion. By so doing, we obtain a fully unsupervised clustering

tool, where no parameter must be set by the user or estimated on external

training set.

In the rest of the chapter we will discuss state of the art work on
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Blind Source Clustering (Section II), provide the necessary background

and notation for the proposed method (Section III), describe the proposed

algorithm (Section IV), and �nally we describe experiments and results

(Section V)

2.1 Related work

PRNU-based image clustering has necessarily a short history. To the

best of our knowledge, Bloy has been the �rst researcher to deal with

this problem, proposing in [8] a modi�ed version of the pairwise nearest

neighbor (PNN) algorithm [57]. In PNN, the source data are regarded as

single-point clusters. The distances between all pairs of clusters are com-

puted, then the closest pair is merged into a new cluster, represented by

its centroid, and the process goes on recursively, until a suitable stopping

condition is met. Clearly, as clustering proceeds, better and better PRNU

estimates become available. To speed up the process, Bloy introduced

some modi�cations to the original PNN, like picking at random couples

of clusters candidate for merging, or looking for all neighbors of a cluster

before proceeding with another one. Besides the need for the user to pro-

vide a sensible threshold to decide on merging, a major drawback of this

method is its computational burden. Several variants of this procedure

can be found in the literature, aimed at reducing its computational cost

or improving accuracy. Sometimes, a pre-processing step is introduced in

order to enhance the �ngerprint [58, 59]. In [60] a faster solution based

on hierarchical clustering is proposed, together with a criterion based on

a silhouette coe�cient [61], which combines measures of cohesion (inside

clusters) and separation (among clusters). The same solution, with minor

modi�cations, is followed in [62] for the purpose of smartphone clustering.

In [63], the original camera �ngerprints are replaced by their compressed

version. The time saved on PRNU-related computation, is used to re-
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store a non-random search phase, where the two clusters with the highest

correlation are selected as candidates at each iteration. Finally, in [64] a re-

�nement step based on Hu's moment vector is applied in order to improve

performance. A di�erent approach is followed in [65], where PRNU-based

clustering is regarded as a graph partitioning problem. Each image is

considered as a node in a weighted undirected graph and the nodes are

partitioned into disjunct sets by means of spectral analysis [66]. Thanks

to the use of e�cient graph processing tools, this algorithm is much faster

than those based on PNN. On the down side, the performance depends

strongly on the random initialization, and the number of clusters must be

set in advance by the user. These problems are partially solved in [67]

by adopting the Normalized Cuts graph partitioning algorithm [68], which

guarantees a more stable performance and does not need the number of

clusters as input parameter. However, the stopping criterion is based on

the comparison of an aggregation coe�cient with a suitable threshold, a

critical input parameter itself. In [67] the optimal threshold value is esti-

mated by preliminary experiments on a training set, but no guarantee can

be given on the alignment of training and test sets.

Regardless of performance, a common undesirable trait of all these

algorithms is the need for the user to specify or estimate some critical pa-

rameters in advance, which may prevent their use in practical applications.

2.2 Background

In this Section we provide the background and notation necessary to

ensure the self-consistency of the paper and guarantee the full understand-

ing of the proposed method. After recalling some concepts and results on

PRNU-based identi�cation, we will brie�y describe correlation clustering,

and �nally consensus clustering, with special reference to the recently pro-

posed [69] WEAC (weighted evidence accumulation clustering) algorithm.
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2.2.1 PRNU

The photo-response non uniformity (PRNU) is an intrinsic and stable

characteristic of each individual camera, caused by tiny imperfections in

the manufacturing process of the sensor. Following the simpli�ed model

of [4, 70], the image observed at the camera output, I, can be written as

I = (1 +K)I(0) + Θ (2.1)

(products between images, unless otherwise stated, are pixel-wise) where

I(0) is the ideal noise-free image, K the camera PRNU, and Θ an additive

noise term which accounts for all types of disturbances. Typically, Ks � 1

for all non-faulty pixels, s, of the image, hence the disturbance produced

by the PRNU is usually unnoticed. Still, since each image acquired by

a given camera contains traces of its PRNU pattern, this can be used for

various forensic applications, from source identi�cation [2, 71, 72] to forgery

detection and localization [4, 73, 74, 75]. The PRNU can be estimated by

extracting the noise-free image by means of a denoising �lter f

Î(0) = f(I) (2.2)

and removing it from the acquired image, to obtain the so-called noise

residual

R = I − Î(0)

= IK + (I(0) − I)K + (I(0) − Î(0)) + Θ

= IK + Θ′ (2.3)

with the new noise term, Θ′, accounting also for denoising errors, I(0)−Î(0).
Given M images acquired by the camera of interest, one can perform a
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maximum-likelihood (ML) estimate of the PRNU as [4]

K̂ =
M∑
i=1

[
Ii∑M
i=1 I

2
i

]
Ri (2.4)

followed by a further step to remove non-unique artifacts originated by

other internal camera processes. Note that, to obtain a reliable estimate, a

large number of input images is required, because the PRNU component,

even in the most favourable conditions, is much weaker than the noise

component. Given an estimate of a camera PRNU, several tests can be

used to decide whether an image, I, comes from the same camera. The

most popular one is based on the correlation index, corr(R, IK̂), between

the image residual, R, and the scaled PRNU, where

corr(x, y) =
〈(x− x), (y − y)〉
‖x− x‖ · ‖y − y‖

(2.5)

〈x, y〉 denotes the inner product between x and y, x indicates the mean of

x, and ‖x‖ its Euclidean norm. Another common statistic is the peak-to-

correlation energy ratio (PCE), computed in the Fourier domain, which is

more robust to image cropping.

In this paper, rather than the ML estimate, we will use the sample

mean

K̃ =
1

M

M∑
m=1

Ri (2.6)

and the related decision statistic corr(R, K̃). Moreover non-unique arti-

facts are removed from the beginning from each residual. By doing so,

both the PRNU estimates and the correlations can be computed without

reference to the original images and without post-processing, which entails

important algorithmic simpli�cations and, eventually, high computational

e�ciency. On the other hand, the sample-mean estimate of the PRNU
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Figure 2.1. Correlation Clustering applied to a toy example. Left: initial
graph; links with positive[negative] weight are shown in blue[red]. Right: an
acceptable two-cluster partition; due to coherence constraints, a link with
negative weight (-1) is kept in the �nal partition, and one with positive
weight (4) is cut.

is largely adopted in the literature and shown [76] to be equally e�ective

than the ML estimate.

2.2.2 Correlation clustering

Clustering can be cast as a graph partitioning problem. Let G = (V,E)

be an undirected graph, where V is the set of nodes, to which the data

instances are associated, and E a set of edges, possibly incomplete, con-

necting couples of nodes. The goal of graph partitioning is to create several

disjoint clusters of nodes according to some suitable criterion. Therefore,

all edges linking nodes of di�erent clusters must be cut, while the others

may be kept. In correlation clustering [77], a weight wij is associated with

each edge e = (i, j), expressing the correlation between nodes i and j.

Although the precise meaning of correlation depends on the speci�c prob-

lem, a positive[negative] correlation indicates, in general, that the linked

nodes are desired to belong to the same[di�erent] cluster. Based on this

information, one may be tempted to cut all nodes with negative weights

and keep the remaining ones. This simplistic approach, however, gives rise

easily to incoherent solutions. In fact, two nodes can be linked through
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Figure 2.2. The ensemble clustering problem.

multiple paths of various lengths, and all such paths must be cut at some

points to ensure the two nodes actually belong to di�erent clusters. As an

example, for the simple graph shown in Fig.2.1 on the left, the two-cluster

solution shown on the right requires cutting a link with positive weight

and keeping a link with negative weight. Therefore, correlation clustering

formulates the graph partitioning problem as a constrained energy mini-

mization. Let xe be the binary indicator variable specifying whether edge

e is cut (xe = 1) or retained (xe = 0), and x ∈ {0, 1}|E| a generic con�gu-

ration of the edges. With each con�guration, an energy E (x) is associated,

de�ned as the sum of the weights of all cut edges

E (x) =
∑
e

wexe (2.7)

In pursuing the minimization of this energy, however, the coherence con-

straints must be taken into account. If nodes i and j are to belong to

di�erent clusters (xij = 1), any other node k cannot be grouped simul-

taneously with both i and j (xik + xjk ≥ 1). These constraints may be
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expressed synthetically [77] as

xij − xjk − xik ≤ 0 ∀ i, j, k (2.8)

and only the con�gurations respecting these constraints, x ∈ Xc, corre-

spond to acceptable solutions. Eventually, the problem can be expressed

as

xCC = arg min
x∈Xc

E (x) = arg min
x∈Xc

∑
e∈E

wexe (2.9)

Note that, since the coherence constraints are linear, the optimal graph

partition can be found by resorting to Integer Linear Programming (ILP).

The problem however is NP-hard, and hence, for large graphs, �nding the

exact solution may become exceedingly complex. Consequently, greedy

techniques are typically adopted [78], which provide slightly sub-optimal

solutions but in a much shorter time.

2.2.3 Consensus clustering

A major problem with data clustering is that results depend signi�-

cantly on the selected algorithm and, even for a given algorithm, on some

critical parameters, like the number of clusters or some decision thresholds.

Therefore, by running multiple algorithms, or even just one algorithm with

di�erent parameters, one ends up with a number of alternative, and possi-

bly very di�erent, clusterings. However, this over-abundance of solutions,

if properly exploited, represents a precious source of information. The

goal of consensus clustering is to suitably combine all these clusterings to

provide a unique and more satisfactory solution, as shown pictorially in

Fig.2.2.

Let

R = {R1, R2, . . . , Rn} (2.10)

be the dataset under analysis, with n data points. A partition P i of the
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dataset is a collection of ni disjoint clusters of data

P i = {Ci1, Ci2, . . . , Cini
} (2.11)

with Cij
⋂
Cik = ∅, ∀j 6= k, and

⋃ni
j=1C

i
j = R. By running one or more

clustering algorithms, with di�erent choices of the parameters, we obtain

M such partitions, or base clusterings,

P = {P 1, P 2, . . . , PM} (2.12)

which are jointly processed to extract eventually a single consensus clus-

tering P ∗. In the literature, several approaches have been proposed for

consensus clustering with a large number of speci�c algorithms [54, 79]. A

�rst approach is to formulate ensemble clustering as a graph partitioning

problem, as originally done in Strehl [80] and then in [81], where the graph

formulation simultaneously models both instances and clusters of the en-

semble as vertices in a bipartite graph. Recently, a more robust algorithm

has been developed in [69] based on sparse graph representation and prob-

ability trajectory analysis. In [82], instead, the Weighted Spectral Cluster

Ensemble (WSCE) method is proposed where a new version of spectral

clustering is considered together with a speci�c solution for combining the

individual clustering results. A �exible and computationally scalable ap-

proach is proposed in [83], where a Bayesian framework is developed for

simultaneous estimation of both the consensus clustering and the source-

speci�c clusterings. A further set of methods rely on pair-wise similarity,

and the Evidence Accumulation Clustering (EAC), proposed in [53], is

among the most popular methods following this approach. It is based on

a co-association matrix which counts how many times two objects occur

in the same cluster in the ensemble of multiple base clusterings. In the

following we will describe in more detail this method and its recently pro-

posed generalization [69] adopted in the proposed algorithm. Let P i(Rj)
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indicate the cluster associated with Rj under the i-th partition. We de�ne

the co-occurrence similarity matrix Si associated with partition P i ∈ P

as the matrix with elements

Sij,k =

{
1 if P i(j) = P i(k)

0 otherwise
(2.13)

That is, entry (j, k) of the matrix is 1 if Rj and Rk belong to the same

cluster under P i, and 0 otherwise. We then build the association matrix

A by averaging the similarity matrices over all base clusterings

A =
1

M

M∑
i=1

Si (2.14)

Therefore Aj,k goes from 0, when data points Rj and Rk never belong to

the same cluster, to 1, when they always do. Based on this �evidence�,

collected over the whole set of base clusterings, one can apply a single-

linkage agglomerative clustering method [84] to obtain the �nal consensus

clustering P ∗. Note that this latter algorithm needs in input the �nal num-

ber of clusters n∗, which must be known a priori or estimated by other

means. Experimental evidence [53] shows that EAC (like other consensus

clustering algorithms) provides, typically, a signi�cant performance im-

provements over all base clusterings. Occasional errors may be originated

by outliers, base clusterings very di�erent from the others, which impair

the quality of the association matrix. To avoid such problems, we adopt

a recently proposed [69] generalization of EAC, the Weighted Evidence

Accumulation Clustering (WEAC) which computes the association matrix

using generic weights

A =

M∑
i=1

wiS
i (2.15)

with
∑M

i=1wi = 1. The weights are chosen so as to prevent outliers from
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a�ecting signi�cantly the result. This is obtained by relying on the �wisdom

of the crowd�, a widespread concept in social and economic sciences [85]

by which the most popular opinions are also the most relevant. Each base

clustering is considered as an opinion and compared with all the other

clusterings through a suitable similarity measure, sim(P i, P j), to compute

a crowd agreement index

CAIi =
1

M − 1

M∑
j=1,j 6=i

sim(P i, P j) (2.16)

These indexes are then used to compute the �nal weights as

wi =
CAIβi∑M
j=1 CAIβj

(2.17)

where the exponent β is used to further emphasize di�erences. Following

again [69] we set β = 2, and use the normalized mutual information as

similarity measure.

A �nal problem is the choice of the �nal number of clusters n∗. Al-

though several methods have been proposed in the literature [53, 86] we

will use a new heuristic, explained in next Section, which better �ts the

needs of our speci�c problem.

2.3 Two-step source clustering

Before describing the details of the proposed method we want to mo-

tivate our design choices in light of the peculiar features of PRNU-based

clustering, and of our goal to obtain a totally blind no-reference algorithm.

Our elementary data are the noise residuals, R1, . . . , Rn, and we cluster

them based on their similarity, measured, for residuals Ri and Rj , by the
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Figure 2.3. Distribution of cross-camera (red) and same-camera (green)
correlations. The correlations are computed among individual noise residu-
als.

Figure 2.4. Distribution of cross-camera (red) and same-camera (green)
correlations. The correlations are computed among individual noise residuals
and camera PRNUs estimated on 50 residuals.

correlation index

ρij = corr(Ri, Rj) (2.18)
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Residuals from the same device (same-camera) exhibit, on average, a larger

correlation than residuals from di�erent devices (cross-camera). However,

due to the strong noise component, the distributions of same-camera and

cross-camera correlations overlap to a large extent, as shown in Fig.2.3,

raising serious doubts on the chances of ever obtaining a reasonable result.

In our problem however, as clustering proceeds (correctly), more and more

same-camera residuals are aggregated, providing increasingly better PRNU

estimates. These, in turn, can be used to reliably select new residuals to

include in the cluster, giving rise to a virtuous circle. Fig.2.4 provides

evidence to support this reasoning. In fact, same-camera and cross-camera

correlations computed between individual residuals and 50-residual PRNU

estimates exhibit well separated distributions.

This preliminary analysis makes clear that clustering and estimation

should proceed hand in hand. In fact, this is exactly what happens with

some well-known clustering methods, like the PNN with its iterative clus-

ter merging. Yet, we follow a di�erent path, carrying out a preliminary

correlation clustering, with no estimate updating, and adopting the esti-

mate/merge alternation only in the �nal re�nement phase. The reason is

that correlation clustering, through its constraints, takes into account all

relationships at once. The decision on whether to merge two data points

in the same cluster or keep them separate depends, heavily, also on the

correlation of both points with third parties. A good example is provided

again by Fig.2.1. Indeed, one might think of merging the rightmost node

with a close one because of their positive (+4) link. This merging, however,

must be ultimately rejected because of the negative links (-6 and -2) with

other nodes of the same cluster. Overall, a much wider information base

is taken into account than in pairwise processing, allowing one to avoid

unwise decisions with long-term e�ects. Using WEAC on top of correla-

tion clustering allows us to exploit the �wisdom of the crowd� and improve

the performance of this initial step. In addition, it frees the user from the
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Figure 2.5. Block diagram of the proposed method. Block 1 computes
correlations among image residuals: the matrix of correlations is the main
data structure of the algorithm. Block 2 (correlation clustering) outputs
a di�erent base partition for each value of parameter α. Block 3 (consen-
sus clustering) outputs a di�erent consensus partition for each value of the
number of clusters. Block 4 selects the optimum partition Q∗ among these.
Block 5 (cluster re�nement) merges clusters until convergence.

need to set a critical parameter, α, described later on, moving a decisive

step towards a fully unsupervised algorithm.

Starting from relatively small, but highly reliable, initial clusters, we

run an ad hoc re�nement phase based on the estimate/merge alternation

mentioned before. To decide which clusters to merge at each step, suitable

maximum-likelihood ratio statistics are computed, based again on residual

correlations, and the same statistics provide the stopping condition of the

algorithm.

These processing phases are now described in detail in the following

subsections. summarized pictorially in Fig.2.5.

2.3.1 Pre-processing

As a preliminary step, we compute the noise residuals of all images

under analysis

R = g(I − f(I)) (2.19)

where f(·) indicates image denoising, and g(·) the processes used to remove

the mean and non-unique artifacts. In our implementation, denoising is

performed by means of the BM3D �lter [87], which proved very e�ective
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[13] for the purpose of PRNU estimation. Non-unique artifacts are removed

as suggested in [4], that is, by zero-meaning all columns and rows, and by

Wiener �ltering in the Fourier domain.

Afterwards, we compute and store the inner products between all cou-

ples of residuals

cij = 〈Ri, Rj〉 (2.20)

and the related correlation indexes

ρij =
cij√
cii
√
cjj

(2.21)

After this preliminary step, neither the original images nor the residuals

themselves will be used anymore, as all items of interest can be computed

based on the matrix of inner products. This will speed-up tremendously the

subsequent steps, and in fact, the pre-processing accounts for the largest

part of the overall computational complexity.

2.3.2 Correlation clustering of noise residuals

We run correlation clustering using a fully connected graph, where the

residuals are associated with the vertices, and the weights account for the

correlation between them. Following [55], we de�ne the weights as

wij = ρij − α (2.22)

The constant α plays a crucial role in the algorithm, as it de�nes which

weights are positive and which are negative. Remember that a posi-

tive[negative] weight wij implies a tendency to merge[separate] residuals

Ri and Rj . Hence, α� 0 implies no clustering at all, while α� 0 leads to

a single cluster including all residuals. Contrary to intuition, setting α = 0

is not a good choice. To gain insight into this problem, let us assume, as

done in [4] and also in [55], that cross-camera correlations (hypothesis H0)
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have a zero-mean Gaussian distribution

ρ|H0 ∼ N(0, σ0) (2.23)

In this case, using α = 0, half the weights between cross-camera residuals

would be positive, leading to a large number of undesired mergings and,

very likely, to less clusters than cameras. In [55], to obviate this prob-

lem, after estimating the standard deviation σ0, we set α = 3σ0. This is

a rather conservative choice, by which cross-camera links have almost al-

ways a negative weight, Pr(w>0 |H0) ' 10−3, and the same happens also

for many same-camera links, due to the overlapping distributions, leading

to many more clusters than cameras. However, in this �rst step of the

process, over-clustering is largely acceptable, since it will be corrected by

the subsequent re�nement step, which operates only through cluster merg-

ing. On the contrary, under-clustering, with the emergence of clusters with

cross-camera residuals, represents an unrecoverable error. In this work we

do not �x α anymore. Instead, we perform CC with a large number of α

values, uniformly sampled in the range [σ0, 5σ0] with step 0.1σ0, and feed

the ensemble of all such base clusterings to WEAC, which extracts the

�nal consensus clustering. Here, both cross-camera (hypothesis H0) and

same-camera (hypothesisH1) correlations are modeled through generalized

Gaussian distributions, and their parameters, including σ0, are estimated

through the expectation-maximization algorithm. Since the shape param-

eter β = 2 (Gaussian) turned out to be near-optimal, it was selected for

the sake of simplicity. Finally, given the weights, we perform Correlation

Clustering by the fast greedy algorithm described in [78], based on the

binary Markov Random Fields optimization of [88].
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2.3.3 Consensus clustering

Once obtained the set of base clusterings P = {P 1, P 2, . . . , PM}, we
run WEAC as described in [69] to obtain the consensus clustering Q. The

latter, however, depends also on the number of output clusters, l, that is

Ql = WEAC(P, l) (2.24)

This parameter can be known in advance, or else must be estimated itself

from the data, and several methods have been proposed in the literature

[53, 86] to this end. In our case, however, considering again the subsequent

re�nement step, these methods are not really suitable, because we are

not interested in the clustering that best explains the data but rather in

any compact conservative clustering that guarantees the absence of wrong

fusions. In other words, we are ready to accept false negatives (same-

camera residuals that are dispersed over several clusters), but want to

avoid false positive (cross-camera residuals included in the same cluster).

Therefore, based on experimental evidence, we devised a simple ad hoc

criterion.

Let us consider the sequence of consensus partitions {Q1, Q2, . . .} out-
put by WEAC as the number of output clusters, l, goes from 1 (single

cluster) to some suitable maximum, possibly, the number of data points.

As l increases, new clusters emerge through the splitting of existing clus-

ters. Initially, such splits separate cross-camera groups of residuals, or

same-camera groups with markedly di�erent features. In these cases, since

a large number of residuals are involved, the similarity between subsequent

partitions Ql−1 and Ql is relatively low. When all these compact groups

have been separated, further increases of the parameter correspond typi-

cally to the separation of just a few residuals from some existing cluster,

with little impact on partition similarity. Therefore we implement a sim-

ple test on similarity, and select the parameter l∗ as the smallest value of l
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beyond which partitions do not change appreciably anymore. In formulas,

let ε be a small positive value, say, ε = 10−2, and

s(l) = sim(Ql−1, Ql) (2.25)

Then l∗ is de�ned by the conditions

s(l∗ − 1) < 1− ε, and s(l) > 1− ε,∀l ≥ l∗ (2.26)

With this value, we obtain the desired consensus clustering Q∗.

2.3.4 Re�nement step

This is a key part of the proposed method. Relying on the hypothesis

that previous steps provided pure clusters, with reliable PRNU estimates,

the clusters are progressively merged while better and better PRNU esti-

mates emerge.

Given the consensus clustering Q∗ = {C1, C2, .., Cl∗}, we estimate the

camera PRNU associated with cluster Cp as the sample mean, K̃p, of its

members. If the cluster is large enough, the estimate is relatively una�ected

by noise, and the correlation between K̃p and a generic residual, Ri, gives

a clear indication on whether Ri is cross-camera (H0) or same-camera (H1)

with respect to K̃p. More formally, let

ρi = corr(K̃,Ri) (2.27)

indicate the correlation between a PRNU estimate and a residual, and

fCp(ρ|H0), and fCp(ρ|H1) (2.28)

be the probability density functions (pdf) of the PRNU-residual correlation

for cluster Cp under the hypotheses H0 and H1, respectively. Given such
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pfds, we also have the log-likelihoods of the two hypothesis for the same

residual Ri {
Lp(Ri|H0) = log fCp(ρi|H0)

Lp(Ri|H1) = log fCp(ρi|H1)
(2.29)

Therefore, assuming the residuals of a cluster to be independent of one

another, given H0 or H1, we can compute the log-likelihoods of the two

hypotheses with respect to Kp for a whole cluster Cq by summing their

individual log-likelihoods, obtaining eventually the decision statistic

Λpq =
∑
Ri∈Cq

[Lp(Ri|H1)− Lp(Ri|H0)] (2.30)

These statistics will guide our re�nement algorithm. To compute them,

we must estimate the same-camera and cross-camera distributions for each

cluster Cp. Towards this aim, we compute the correlation index between

Kp and all residual Ri /∈ Cp, and run the expectation-maximization (EM)

algorithm assuming a generalized Gaussian distribution under both hy-

potheses. However, it may happen that all same-camera residuals have

been already collected in cluster Cp, in which case the EM could not work

properly. To obviate this problem we augment the set of same-camera

correlations through a leave-one-out approach. That is, we remove one of

the residuals, say Rj , from the cluster and compute a new estimate of the

cluster PRNU without Rj

K̃ ′p,j =
1

|Cp| − 1

∑
Ri 6=Rj∈Cp

Ri (2.31)

Although K̃ ′p,j does not coincide with K̃p, it is a good approximation of

it whenever |Cp| is not too small. At this point we can compute the

correlation

ρ′j = corr(K̃ ′p,j , Rj) (2.32)
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Algorithm 1 Clustering Re�nement

1: procedure C = Refinement({R}, {C})
2: T|C| = 0

3: do

4: changed = FALSE

5: Increase T|C|

6: L = {Cp : |Cp| > T|C|}
7: S = {Cp : |Cp| ≤ T|C|}
8: compute K̃p for all Cp ∈ L

9: compute Λpq for all Cp ∈ L and Cq ∈ S

10: while max(p,q) Λp,q > 0 do

11: changed = TRUE

12: (p∗, q∗) = arg max(p,q) Λp,q

13: Cs = merge(Cp∗ , Cq∗)

14: update L ,S

15: update Kp for all Cp ∈ L

16: update Λpq for all Cp ∈ L and Cq ∈ S

17: end while

18: while changed

19: end procedure

and repeat it for all Rj ∈ Cp, contributing a total of |Cp| new samples of

same-camera correlations. Note that all PRNU-residual correlations can

be computed based only on the matrix of inner products as

ρi = corr(K̃,Ri) = corr(
1

|Cp|
∑
Rj∈Cp

Rj , Ri)

=

∑
Rj∈Cp

cji√∑
Rj∈Cp

∑
Rk∈Cp

cjk
√
cii

(2.33)

Therefore, we do not really need PRNU estimates to compute correlations,

which makes re�nement a very fast process.
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We can now describe the iterative re�nement procedure, also with ref-

erence to the pseudo-code shown in Algorithm 1.

The generic step is characterized by a threshold, T|C|, which divides

the current clusters in two sets

L = {Cp : |Cp| > T|C|}, S = {Cp : |Cp| ≤ T|C|} (2.34)

namely, the sets of large and small clusters, L and S . Here, �large� and

�small� depend on T|C|, which is a running threshold (not a parameter),

raised progressively during iterations so as to merge �rst the smallest clus-

ters and then proceed with larger ones.

At each iterations we try merging each small cluster with one of the

large clusters. With this aim, we compute the statistics Λpq, for each

Cp ∈ L and all Cq ∈ S , and sort them in descending order. If the largest

Λpq is positive, the corresponding clusters are merged, then, the statistics

for the newly formed cluster are recomputed, all lists are updated, and the

algorithm proceeds in the same way until all statistics become negative.

At this point T|C| increases, moving the boundary between large and small

clusters. That is, some large clusters move from L to S , and become

candidates to be merged with larger ones. Moreover, small clusters that

remain isolated in a given step may still be merged in later steps, as PRNU

estimates keep improving and statistics change. The algorithm stops when

a single cluster remains in L and no more merging is possible.

2.4 Experimental results

To validate the proposed method, we carried out a number of exper-

iments in a large variety of conditions, comparing performance with the

best state-of-the-art references. Besides using the original images as they

are output from the cameras, we consider also the more realistic case of
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images subject to compression and resizing, as customary on social net-

works. In the following subsections, we describe the datasets used for the

experiments, the performance metric, some implementation details, and

�nally the experimental results.

2.4.1 Datasets

In order to guarantee full reproducibility of results we use the publicly

available Dresden Image Database [44] described in the previous chapter.

For our experiments, we selected 10 models (see Table 2.1), including

a minimum of 2 and a maximum of 5 devices per model. The original

images are relatively large, from 5 to 12 Mpixels, and uncompressed. Upon

uploading on Facebook they are resized and JPEG compressed with size

and quality factor depending also on a quality toggle selected by the user

[89]. In the low quality (LQ) modality, the size is about 1 Mpixel, and the

JPEG quality factor goes from 70 to 90.

We built a number of heterogeneous datasets to explore various situa-

tions, more precisely

Set A: models { I70, Z150, D200, µ, RCP };

Set B: models { M1063, S710, DCZ, L74w, NV15 };

Set C: all ten models.

For each dataset (say X) we consider three version, with one (X.1) two

(X.2) or all (X.max) devices per model, in order to explore the depen-

dence on the total number of devices in the set. Therefore, the largest set,

C.all, includes 39 devices. We designed the disjoint sets A and B because,

for some reference techniques, a few key parameters must be estimated

on a training set: some thresholds for Bloy2008, the threshold Th for

Amerini2014, and the α and β parameters for Marra2016. So, if set A is

under test, parameters are estimated on set B and viceversa. For set C we
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are forced to perform the estimation on models, or even individual devices,

already present in the dataset. Note that no training set is necessary for

the proposed method.

To these heterogeneous datasets we add all homogeneous datasets, in-

cluding all devices of a single camera model. This is an important and

challenging test, because residuals might contain model-related micropat-

terns, due to the internal image processing chain, which boost clustering

performance. In homogeneous datasets, such micropatterns coincide for

all devices and cannot be exploited.

2.4.2 Results

The proposed algorithm has been developed in Matlab under Linux. To

ensure full reproducibility of research, our software is freely available online

at www.grip.unina.it. Moreover, the Correlation Clustering source code is

available at www.wisdom.weizmann.ac.il/∼bagon/matlab.html, while the

WEAC software can be reached through the link https://arxiv.org/

abs/1405.1297. The reference methods have been implemented as de-

scribed in the original papers.

By using Matlab, we renounce some e�ciency in favor of simpler devel-

opment and better readability. This also prevents an accurate assessment

of complexity. On the other hand, most of the computational burden is

associated with the unavoidable pre-processing phase. The denoising of N

images, and the computation of inner products between N(N − 1)/2 cou-

ples of residuals largely dominates the complexity. In fact, the remaining

processing tasks do not access the heavy original data anymore, and base

all their computations on the matrix of inner products. For our largest

dataset, actual clustering (including the generation of multiple CC parti-

tions) took a few dozens seconds, as opposed to about two hours for the

pre-processing phase.

https://arxiv.org/abs/1405.1297
https://arxiv.org/abs/1405.1297
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2.4.2.1 Performance metric

Performance is assessed based on the agreement between algorithm

clustering and ground truth clustering, measured by the popular Rand

Index [90]. Let us consider a set of n data points, and two alternative par-

titions P = {C1, C2, . . . , CN} and P ′ = {C ′1, C ′2, . . . , C ′N ′} of these points.
Then let us consider all

(
n
2

)
couples of points: the two partitions are in

good agreement if the majority of couples have the same treatment in the

two cases, namely, they are kept together (in the same cluster) in both P

and P ′, or are separated (put in di�erent clusters) in both P and P ′. To

measure agreement the following counters are kept:

� a1: couples falling in the same cluster in both partitions;

� a2: couples falling in di�erent clusters in both partitions;

� d1: couples falling in the same cluster in P and in di�erent clusters

in P ′;

� d2: couples falling in di�erent clusters in P and in the same cluster

in P ′.

Based on these agreement (a1 and a2) and disagreement (d1 and d2) coun-

ters, the Rand Index is de�ned as

RI =
a1 + a2

a1 + a2 + d1 + d2
= (a1 + a2)/

(
n

2

)
(2.35)

This index goes from 0 (total disagreement) to 1 (perfect agreement).

However, the average Rand Index for two random partitions RI is a non-

zero number which depends deterministically on the cluster cardinalities.

To get rid of this bias, we resort to the Adjusted Rand Index (ARI) [91],

de�ned as

ARI = (RI −RI)/(1−RI) (2.36)



64 CHAPTER 2. BLIND SOURCE CLUSTERING

The ARI decreases quite fast as the clustering under test departs from the

ground truth, therefore, values close to 1 indicate a near-perfect agreement.

Imperfect but informative clusterings have a positive ARI, while values

close to zero or negative indicate serious issues.

2.4.2.2 Results on original images

Table 2.2 shows experimental results for the selected datasets. Together

with the proposed method, we consider some reference methods proposed

in latest years (see Section II), shortnamed Bloy2008 [8], Fahmy2015 [64],

Amerini2014 [67], and Marra2016 [55]. In addition, as a further reference,

we show the results provided by the oracle versions of Ncut clustering

[68] and Correlation Clustering [77], with parameters set a posteriori so

as to maximize performance. Therefore, such results upper bound the

performance achievable by these state-of-the-art clustering methods. We

also show results for the recently proposed [82] weighted spectral cluster

ensemble (WSCE) algorithm, with the number of clusters set to the true

number of devices (true-k) assumed known. For each dataset, the best

result (excluding oracles) is highlighted in blue.

The proposed method provides the best performance on all datasets,

sometimes with a wide margin w.r.t. the second best. As an example,

on the largest dataset, C.max, the proposed method has an ARI of 0.821

as opposed to the 0.686 of Marra2016, the second best. In addition, it

performs always better than both oracles and WSCE, with the only ex-

ception of dataset A.max where CC oracle is slightly better. These results

fully support our approach. In particular, the consistent performance gain

w.r.t. CC oracle underlines the importance of the re�nement phase, which

exploits the gradually improving PRNU estimates to make some critical

decisions. On the other hand, the improvements w.r.t. Marra2016 speak

in favor of other innovative design choices made in this work, notably, the

use of consensus clustering, and the adoption of a model-based decision
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statistic. It is worth reminding that, contrary to most reference tech-

niques, the proposed algorithm does not need user-de�ned parameters nor

estimates them on external training sets. As expected, the performance

generally impairs, although not monotonically, as the number of devices in

the dataset increases. Nonetheless, even on the 39-device C.max, the pro-

posed method provides a very accurate clustering. Table 2.3 shows exper-

imental results for the homogeneous datasets, comprising several devices

of the same model. Contrary to our expectation, there is no performance

impairment, on the average, with results that are basically aligned with

those observed for the smallest heterogeneous datasets. Instead, the de-

pendence on the number of devices is fully con�rmed. The performance is

very good for datasets with just 2 or 3 devices, with Ncut oracle providing

always perfect clustering, while it impairs for 5-device datasets. A nega-

tive peak is observed for the Casio EX-Z150 model, due to some artifacts

in the PRNU, already noticed in [92] and [76]. On these homogeneous

datasets the proposed method is not always the best, but keeps providing

the best average performance, with a signi�cant lead over the second best,

Marra2016. Again, its performance is slightly better than both oracles and

WSCE.

2.4.2.3 Results on images uploaded from Facebook

With Table 2.4 we begin investigating the behavior of the proposed and

reference methods in the presence of image impairments. To this end, all

images have been uploaded on Facebook, selecting the high quality (HQ)

modality, and then downloaded again. Facebook automatically resizes and

compresses the images, but the HQ option guarantees that only minor im-

pairments are present. Even so, by comparing results with those of Table

2.2, a signi�cant performance impairment is observed for all methods, with

a loss of 0.3 points on the average. Some methods seem to su�er more than

others the lower image quality, notably, Fahmy2015 and Amerini2014, to-
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gether with the Ncut oracle, and especially WSCE. This latter method

is probably penalized by the constraint on the number of clusters which,

with very noisy data, leads to highly impure clusters. The CC oracle, to-

gether with the CC-based methods, Marra2016 and the current proposal,

show smaller losses, suggesting this graph partitioning approach to be more

conservative than Ncut. The proposed method keeps being the best per-

former on 7 datasets out of 9, losing to Marra2016 in two cases. When

the low quality option is used, Table 2.5, the single-image PRNU estimate

represented by image residuals becomes quite unreliable and, accordingly,

the performance decreases drastically, to the point that the majority of

methods become basically useless. Also the proposed method su�ers from

such low quality inputs. It keeps being the best on 7 out of 9 datasets,

but the performance impairs signi�cantly, and the corresponding cluster-

ings, though meaningful (positive ARI) are not much reliable. Arguably, in

such conditions, one cannot rely only on the PRNU to make decisions, and

further information should be collected to complement the image residuals.

2.4.2.4 Alternative consensus clustering tools

In the proposed method, we use a speci�c consensus clustering algo-

rithm, WEAC, but many more have been proposed in the literature [54].

Testing all such methods is out of the scope of this work, but we tried

to replace WEAC with the hybrid bipartite graph formulation (HBGF)

proposed in [81], which �ts nicely in the whole algorithm, and whose code

is published online by the authors. The results, summarized in Table 2.6,

show WEAC to be clearly preferable, and especially more robust than

HBGF, with a strong performance gain especially on the larger datasets.
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original images facebook HQ
Set WEAC HBGF WEAC HBGF

A.1 0.916 0.397 0.723 0.602
A.2 0.852 0.665 0.592 0.541

A.max 0.729 0.283 0.532 0.471

B.1 0.915 0.677 0.847 0.791
B.2 0.836 0.786 0.718 0.660

B.max 0.881 0.822 0.644 0.436

C.1 0.865 0.532 0.646 0.378
C.2 0.956 0.807 0.485 0.537

C.max 0.821 0.347 0.601 0.386

Table 2.6. Comparison among ensemble clustering tools.

2.4.2.5 Visual inspection

To gain a deeper insight on the algorithms' behavior, Fig.2.6 and

Fig.2.7 provides a graphical representation of some sample results, as al-

ready done in [67]. To save space, we show results only for set B.1, with

both original images (Fig.2.6) and Facebook high-quality images (Fig.2.7).

Each bar-graph shows (up to 18) clusters retrieved by the methods under

comparison: Bloy2008, Amerini2014, Fahmy2015, Marra2016, proposed.

The total number of retrieved clusters and the ARI measure are shown

top-right. Each bar may show di�erent colors, proportional to the num-

ber of cameras in the cluster that come from each of the �ve devices.

The legend on the bottom shows, for each device, the associated color,

the corresponding camera model, and number of images in the dataset.

With both original and facebook datasets, the proposed method provides

large and pure clusters for all cameras. Using a small set (5 devices) al-

lows one to gain full insight on performance, a di�cult task when many

more clusters are involved. Marra2016 and the proposed method provide

the best results, as already clear from the ARI �gures. In both cases,
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Figure 2.6. Graphical representation of clustering results on the B.1 dataset
with original images.

all detected clusters are pure or almost pure and there are large clusters

associated with each camera which allow a reliable estimation of the corre-

sponding PRNU pattern. The only wrong decisions concern the separation

of a few small clusters from the main ones. This happens for the Kodak
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Figure 2.7. Graphical representation of clustering results on the B.1 dataset
with HQ facebook images.

and the Praktica devices, with Marra2016, and only for the Kodak with

the proposed method. On the contrary, all other methods generate some

mixed clusters, which lead to inaccurate estimates of the PRNU pattern.

Moreover, Fahmy2015 is a�ected by a strong cluster fragmentation, while
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Amerini2014 produces a large number of singletons and very small clusters.

The performance impairs signi�cantly for all methods when the images are

downloaded from Facebook. Even Marra2016 generates only 4 large clus-

ters, now, with images of the Nikon camera dispersed over many small

clusters. In this case, despite the impairment, the proposed method pro-

vides clearly the best result, with four near-perfect clusters and the other

ones, two of which relatively large, accounting mostly for the Nikon images.





Chapter 3
Forgery localization in a blind

scenario

The wide di�usion of powerful image editing tools has made image ma-

nipulation very easy. This impacts on many �elds of life, and is especially

dangerous in the forensic �eld, where images may be used as crucial evi-

dence in court. Therefore, in the last decade, digital image forensics has

grown tremendously, and new methodologies have been developed to track

an image source and determine its integrity. In particular, the interest has

focused on passive techniques, which detect traces of manipulations from

the analysis of the image itself, with no need of collaboration on the part

of the user.

Some of the most successful camera-based methods rely on the PRNU.

Its use was �rst proposed in [2], both for source identi�cation and forgery

localization. In this section we focus on PRNU-based methods for forgery

detection and localization.

Several improvements have been proposed with respect to the basic

method of [2]. in [4] a predictor is estimated which adapts the statistical

75
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decision test locally to take into account image features, such as texture,

�atness and intensity, thus reducing the probability of false alarms. In

[74], instead, the problem is recast in terms of Bayesian estimation, using a

Markov random �eld (MRF) prior to model the strong spatial dependencies

and take decisions jointly rather than individually for each pixel. In [93]

and [75] the problem of small forgery detection is addressed, resorting to

image segmentation and guided �ltering to improve the decision statistics.

Further improvements have been recently proposed by considering the use

of discriminative random �elds [94] or by introducing multiscale analysis

[95].

All these methods rely on the assumption that a large number of im-

ages are available, which are known to come from the camera of interest.

However, such an hypothesis is not reasonable in a real-world scenario.

Therefore, in this paper we propose and analyze a framework for image

forgery localization in a blind scenario [73]. We only assume to have a

certain number of images, whose origin, however, is unknown. Then we

estimate one or more PRNU's by means of a blind source clustering al-

gorithm and use them to establish the integrity of the image under test.

In the following Section we describe the PRNU-based framework for blind

forgery localization, while in Section 3 present experimental results of [96]

with reference to various clustering approaches [8, 67, 55].

3.1 Camera-based Forgery Localization Framework

In both camera identi�cation and forgery localization tasks, the PRNU

of the camera of interest is given in advance, or is accurately estimated

from a large number of images coming from the camera. However, in

many forensic scenarios, and especially in investigation, no information is

available on the origin of the images under analysis, neither the probe nor

the dataset. Often, however, it is reasonable to assume that the images
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Figure 3.1. A framework for PRNU-based forgery localization in a blind
scenario.

in the dataset come from just a few di�erent devices. With this assump-

tion, we can pursue PRNU-based forgery localization in a blind scenario,

following the framework shown in Fig.3.1 and already outlined in [73].

The proposed framework consists of four steps

1. Residual-based image clustering;

2. Cluster PRNU estimation;

3. Camera assignment;

4. Forgery localization.

The �rst two steps allow us to group together images coming from the

same camera and to estimate their PRNU. Then, in step 3, the test image

is associated with one of the clusters (or possibly none) by a PRNU-based

correlation test. Finally, the tampered area of the test image is localized
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by detecting the absence of the selected PRNU. These steps are described

in more detail in the following.

3.1.1 Residual-based image clustering

To perform PRNU-based forgery localization one needs the true PRNU

of the camera. Otherwise, it can be estimated by averaging a large number

of images taken by the camera of interest. To this end, the �rst step

of the proposed framework aims at grouping together all images of the

dataset coming from the same camera. Since these share the same PRNU,

they will exhibit a larger correlation than images coming from di�erent

cameras. However, before computing correlations, the high-level content

of the images, which represents an interference in this context, is removed

by high-pass �ltering, obtaining the so-called noise residuals.

Let R = R1, R2, . . . , RN be the set of all noise residuals in the dataset.

We want to partition this set in M distinct clusters, where the number

of clusters is not know a priori. Therefore, the output of this step is a

partition, P , of the dataset, namely:

P = {C1, C2, ..., CM} Ci ∩ Cj = ∅ ∀i 6= j,

M⋃
i=1

Ci = R (3.1)

In the literature, a number of PRNU-based clustering methods have been

proposed recently [56, 67, 8, 9], some of which will be considered in the

experiments. Ideally, we would like to obtain as many clusters as are the

source devices in the dataset, M = Mt, with Mt the number of devices,

and all of them �pure�, namely consisting only of images taken by the

same device. In practice, the estimated number of clusters may di�er

from the number of cameras and, even when they coincide, the clusters

may not be pure, comprising images coming from di�erent sources. In all

cases, the e�ect is a loss of accuracy in PRNU estimation. When under-
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partitioning occurs,M < Mt, clusters are necessarily �impure�, comprising

also images coming from other cameras which act as additional noise in

the estimation. In case of over-partitioning, M > Mt, even pure clusters

may comprise only a fraction of all images taken by a camera, leading to

a less reliable estimate. The aforementioned e�ects may both show up

in the same clustering experiment. Of course, all deviations from perfect

clustering tend to cause a loss of performance

3.1.2 Camera �ngerprint estimation

In the second step, each cluster is treated as �pure�, and used to esti-

mate both the PRNU and the predictor needed in the localization phase

[4]. Given Nm images in the m-th cluster, one can perform a maximum-

likelihood (ML) estimate of the PRNU as [4]

K̂m =

Nm∑
i=1

[
Ii∑Nm

i=1 I
2
i

]
Ri (3.2)

In alternative, one can use the simpler sample average

K̂m =
1

Nm

Nm∑
i=1

Ri (3.3)

which ensures very close performance to the ML case, provided Nm is large

enough. On the other hand, when the cluster is too small, both estimates

become quite unreliable because the noise residuals, Ri, have a very small

signal component overwhelmed by noise. Whatever the estimator, some

suitable steps follow to remove non-unique artifacts originated by other

camera processes.

Some clustering methods tend to generate a large number of small

clusters, even singletons, besides a few large ones. It makes sense to discard

such small clusters, due to the ensuing unreliable estimates. Therefore, we
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introduce a parameter, Nmin, left to the analyst to set, such that all clusters

with Nm < Nmin are automatically discarded, avoiding their involvement

in the forgery localization process.

Besides the PRNU itself, the localization algorithm proposed in[4]

needs a predictor, which establishes the expected value of the correlation

for a pristine image. Therefore, for each cluster, we must also estimate the

predictor parameters, say Θm. To this end, the cluster must be further di-

vided in two subsets, Cm = C ′m∪C ′′m. The �rst one, C ′m, is used to compute

an internal PRNU, to which images of the second set, C ′′m, are correlated.

The parameters of the predictor, Θm, are then designed to minimize the

error between the predicted and observed values of the correlation. Clearly,

this further partition of the cluster further stresses the need for it to be

large enough. To reduce this problem, we split clusters exactly in half for

this task. Note, however, that the �nal estimate of the cluster PRNU can

be carried out from the whole set. Indeed, the test image is completely

alien to the cluster, and hence there is no reason to penalize the estimation

of the PRNU. In conclusion, the output of this step is the set of estimated

PRNUs and predictor parameters, {K̂m,Θm,m = 1, . . . ,M}.

3.1.3 Camera assignment

In this step we try to establish whether the probe image, Ip, is com-

patible with one of the estimated PRNU's, and which one. This decision

is based on the normalized correlation1

ρm = corr(Rp, Ip × K̂m) (3.4)

between the high-pass image residual, Rp, and each of the scaled �nger-

prints.

1Here, and throughout this work, we assume the images to be perfectly aligned.
Otherwise, one can replace normalized correlation with Peak-to-Correlation Energy
(PCE) ratio [97], which works correctly also in the presence of image cropping.
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The probe image is assumed to come from the camera with the most

correlated PRNU

K̂max = arg max
m

corr(Rp, Ip × K̂m) (3.5)

which is therefore selected to perform forgery localization. However, it is

also possible that none of the cameras under analysis originated the probe

image, in which case all correlations should be small. To formalize this

problem, let us consider the two hypotheses

H0 : the probe image is alien to the dataset

H1 : the probe image comes from one of the dataset cameras

To design a statistical test we should know the distribution of ρ under

both hypotheses. This is not possible in our blind scenario, therefore we

resort to a Neyman-Pearson test, selecting a decision threshold, t, which

guarantees a suitably small false alarm probability PFA. Following [98], we

assume the normalized correlations to have a Gaussian distribution under

H0

ρ ∼ N(0, 1/HW ) (3.6)

where H and W are the image dimensions. Therefore

PFA = Pr(ρmax > t|H0) = 1− (1− Pr(ρm ≤ t|H0))
M

= 1− (1−Q(t
√
HW ))M 'MQ(t

√
HW ) (3.7)

with the latter approximation holding for small M and Q(t
√
HW ) � 1.

By inverting the above relation the desired threshold is obtained.
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3.1.4 PRNU-based forgery localization

In the last step of the framework, a PRNU-based forgery localization

technique is applied. Several such methods have been proposed in the last

few years, and they all share the same basic idea. When the image is

tampered with, for example through the splicing of some alien material,

its PRNU is locally removed. Therefore, a sliding-window correlation test

is performed, and when the local correlation index falls below a given

threshold, a forgery is declared. Since the correlation may also depend

on the image content, the threshold must be adapted locally by using the

predictor with parameters Θmax estimated in step 2.

The output of this localization step is a binary decision mask that

highlights the pixels that are considered as tampered. Given such a mask,

and the corresponding ground truth mask, one can compute a number of

performance indicators. However, it is worth pointing out that the output

mask should be always analyzed by a human interpreter. In fact, real-life

image forgeries are performed with a purpose, and they possess a semantics

that is not easily captured by algorithms. The localization mask should

be therefore regarded as a diagnostic tool to support the expert decision.

3.2 Experimental results

In this section we evaluate the performance of the proposed PRNU-

based framework for blind forgery localization. Experiments are carried

out on six cameras: Canon EOS-10D, Canon EOS-450D, Canon Ixus 95IS,

Nikon D200, Nicon Coolpix S5100, Sony DSC S780. For each camera we

use 50 images as training set to perform the PRNU-based clustering and to

estimate the cluster PRNUs. Performance is assessed on 50 more images

per camera, di�erent from those of the training set. All images have the

same size of 768×1024 pixels, and are cropped from the same region of

the full-size images. To study forgery localization, we generate forged
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Set NCut-oracle PCE-PNN Marra2016
ARI TPR FPR ARI TPR FPR ARI TPR FPR

Original 0.872 84.31 1.21 0.839 75.74 0.00 0.960 94.79 0.26
JPEG (QF=90) 0.647 61.07 2.77 0.819 79.02 1.50 0.921 93.58 1.33

Table 3.1. Performance of clustering algorithms.

versions of the test images by pasting on them, at the center, a square

region of 128×128 or 256×256 sampled randomly from another image. In

addition, we repeat the experiments using JPEG compressed images with

a quality factor of 90. All the noise residuals are extracted by using the

BM3D denoising �lter [87], and removing non-unique artifacts caused by

demosaicing and lens distortions as proposed in [4]

Localization results are given in terms of ROC curves, giving pixel-

wise probability of detection, PD, and probability of false alarm, PFA, as a

function of the decision threshold. As a synthetic measure, the area under

the ROC curve (AUC) is also computed. Before considering localization,

however, we study the performance of previous steps, to understand their

impact on the accuracy.

3.2.1 Image clustering and PRNU estimation

We implemented three clustering algorithms, based on Normalized

Cuts [67], on pairwise nearest neighbor (PNN) clustering [8, 73], and on

correlation clustering [55], called Marra2016. Note that Ncut requires a

threshold parameter to be estimated on a training set, so we consider here

an oracle version, selecting a posteriori the best parameter. For PCE-PNN

we used the threshold used by the authors in the original paper. Other

PRNU-based clustering methods [8, 58] are not considered here because

they have been shown in [67] and [55] to provide a generally worse perfor-

mance.
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Tab.3.1 shows results of clustering algorithms on both original and

JPEG compressed images in terms of adjusted rand index (ARI), true

positive rate (TPR) and false positive rate (FPR). Marra2016 provides

clearly the best results, even better than the oracle version of Ncut, with

ARI always very close to 1 (perfect clustering).

In Fig.3.2 we show a graphical representation of results. For uncom-

pressed images (left) Marra2016 provides near-perfect results, with just

a few extra clusters for the Sony camera, removed because too small

(Nm < Nmin). In this condition, almost all available images can be used

to estimate the PRNU's. The other methods show a higher fragmentation,

but clusters are large and pure enough to provide good estimations. Using

JPEG compressed images, performance impairs for all methods, but only

slightlly so for Marra2016. On the contrary PCE-PNN and Ncut-oracle

su�er more on this dataset, especially for the Nikon D200 images, that

will not allow a good PRNU estimate.

3.2.1.1 Image to cluster assignment

After clustering the images and estimating the cluster �ngerprints, the

probe image is correlated we all PRNU's. If the maximum correlation

exceeds the decision threshold, t, forgery localization is performed. To-

gether with the 600 test images coming from the selected cameras, we use

600 (negative) images taken from other sources, and cropped to the same

size. Tab.3.2 shows the detection performance for a threshold, t, set so

as to obtain a theoretical false alarm probability PFA = 10−3. In detail,

the FPR is the fraction of negative images that pass the test, while the

TPR is the fraction of positive images (taken by one of the cameras in the

dataset) recognized as such. The FPR is always very small, compatible

with the theoretical level. The TPR is also quite large, but almost 6%

of the positives are rejected, a fraction that grows above 10% with JPEG

compressed images (almost 20% for PCE-PNN).
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Figure 3.2. Clustering results on original images (left) and JPEG com-
pressed images (right) for Ncut-oracle, PNN-PCE and Marra2016. Colors
refer to the devices (see legend) while bar height indicate number of images
in a cluster.

Set Original JPEG (Qf=90)
TPR FPR TPR FPR

Ncut-oracle 94.3% 0% 89.2% 0%
PCE-PNN 94.0% 0.3% 81.0% 0.7%
Marra2016 93.9% 0% 89.6% 1.5%

Table 3.2. Detection performance on original and JPEG compressed im-
ages.

Considering that Marra2016 provides near-perfect clustering, these er-

rors must be attributed to the intrinsic problems of PRNU estimation. Af-

ter correct detection, we could still have a wrong assignment, that is, the
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Figure 3.3. Forgery localization results on original (top) and JPEG com-
pressed images (down) with forgeries of 256×256 (left), and 128×128 pixels
(right).

probe image could be associated with a wrong camera/PRNU. However,

our experiments show this event to be extremely unlikely, with probabili-

ties lower than 0.1% in all cases and not reported in detail for the sake of

brevity.

3.2.1.2 Forgery localization

We conclude this analysis by studying forgery localization performance.

Localization is carried out by the algorithm proposed in [74], based on a
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Figure 3.4. Results for clustering-based and �naive� solutions on original
(left) and JPEG compressed images (right) with 256× 256 pixel forgeries.

MRF prior and on the predictor of [4]. Together with the ideal case where

the PRNU's are estimated from all available images, the case of real-world

imperfect clustering is also considered, with all methods discussed before.

Fig.3.3 shows the ROC curves for original (top) and JPEG compressed

images (down) with the two di�erent forgery sizes. With large forgeries on

uncompressed images results are very good. The AUC's are close to 0.9

with both ideal and Marra2016 clustering, and only slightly smaller with

the other clustering methods.

Surprisingly, Marra2016 provides even a small improvement with re-

spect to ideal clustering,maybe because the discarded images are outliers

that impact negatively on the PRNU estimation. As expected, all results

impair somewhat when considering smaller forgeries and JPEG compressed

images. However, the performance obtained with blind clustering keep be-

ing very close (equal for Marra2016) to those of ideal clustering. Finally,

we assess the performance when we renounce clustering altogether, com-

puting a single PRNU estimated by averaging all images in the dataset.

This �naive� approach makes sense, since the estimated PRNU will bear

traces of all camera �ngerprints, although attenuated due to the large
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number of unrelated images averaged together. Fig.3.4 shows a signi�cant

performance drop with respect to the clustering-based solution , both with

original and JPEG compressed images (only 256× 256 pixel forgeries, for

brevity) which fully supports our investigation.



Chapter 4
Feature-based counter forensics

Images and videos are pervasive in all aspects of the modern world, and

are becoming ever more important also in forensics, where much evidence

in court are based on visual information recorded on digital media. As a

consequence, an arms race has long started, as in many other �elds related

with forensics, between attackers, aiming at falsifying visual evidence for

malicious purposes, and defenders who try to reveal possible tampering.

Image counter-forensics is of great importance for both sides, as attackers

want to conceal traces of their manipulation, and defenders try to remain

one step ahead, by exposing themselves possible evasion tools. Among the

most frequent and dangerous forms of image manipulation is the insertion

of new objects in a photo or, di�ering only under a semantic point of view,

the occlusion of existing objects. Fig.1 shows some examples of image

forgeries, crafted with an increasing level of skill on the part of the attacker.

Today's editing tools, like PhotoShop or GIMP, besides allowing the easy

production of a forgery, include a whole array of tools to conceal their

traces, like boundary smoothing, amounting to a basic form of counter-

forensics.

The recent trend in image forgery detection is towards the analysis of
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Figure 4.1. Examples of forged images: the copy-moved �ower in the left
image can be easily spotted by visual inspection; in the center image, the
keyboard has been hidden by pieces of background, but there is a suspect
change of shade; the frame replaced in the left image cannot be detected
without some statistical analysis tools.

image micro-patterns, that is, of the statistical behaviour of the image in

small local areas captured by synthetic features (local descriptors). Of-

ten, the analysis is carried out not on the original image, but on some

high-pass residual, obtained through suitable �ltering, since traces of tam-

pering may be found more easily once the low-pass image content has been

removed. Machine learning detectors based on local descriptors (LD) pro-

vide an extremely promising performance and, quite remarkably, the teams

ranking �rst and second in the �rst IEEE Image Forensics Challenge on

image forgery detection (http://ifc.recod.ic.unicamp.br) both used

techniques of this kind. Besides providing good results, techniques based

on local descriptors, hence on higher-order statistics, are more resilient to

counter-forensic attacks, since the relation between image and features is

typically non-invertible.

In this chapter, we propose and analyze some counter-forensic attacks

http://ifc.recod.ic.unicamp.br
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to LD-based forgery detection techniques presented also in [99]. More

in detail, we consider a state-of-the-art detector based on the computa-

tion of a histogram of co-occurrences on the image residual [10] and a

simpler approach based on Local Binary Pattern (LBP) descriptor [32],

proposed originally for texture analysis. The classi�er is trained on a

suitable training set, comprising splicings (with no speci�c processing) of

various sizes, including small ones. Inspired by [100] we consider both a

perfect-knowledge scenario, in which the attacker has full knowledge of

the detector, and a limited-knowledge one, where no side information is

available. In both scenarios, the proposed techniques perform feature-

histogram restoration, with a constraint on image distortion. In our case,

however, gradient-descent algorithms cannot be used, and an ad hoc greedy

optimization algorithm is therefore proposed. Experimental analysis on a

suitable test set proves the e�ectiveness of these attacks, with an obvious

performance gap in favor of the perfect-knowledge scenario.

4.1 Related Work

Counter-forensics is a relatively new topic in the context of image

forgery detection [5], especially if compared with more mature �elds, like

biometrics, digital watermarking, steganography, network security, etc.

Kirchner and Böhme have been probably the �rst researchers to deal with

image counter-forensics showing [101] how some rather simple attacks can

destroy traces of resampling and casting therefore serious doubts on the

e�ectiveness of some image forensic schemes based on these features. Like-

wise, Stamm [102] showed that the quantization artifacts caused by JPEG

compression can be hidden by adding a dithering noise on the DCT co-

e�cients, restoring approximately the histogram of the original image.

Interestingly, it was later observed [103] that dithering introduces its own

artifacts, that other forensic tools can discover. This is a rather general
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phenomenon, observed also with reference to techniques based on camera

sensor noise where the attack [104] is countered by an ad hoc method [105]

which can be attacked in its turn [106]. Indeed, such two-party problems

should be handled through a game-theoretic approach, as proposed in some

recent papers [107, 108, 109].

The theoretical results found therein, however, hold only in very special

conditions, not met in most practical applications. Notice that changes on

isolated image samples or transform coe�cients impact on distortion in a

simple way, allowing for an easy enforcement of the distortion constraint.

When working on more elaborate features this is often not the case. A

relatively common approach to counter-forensics is histogram restoration.

Several typical image processing tasks, such as contrast-enhancement or

gamma correction, but also resampling and compression, leave traces in

the image histogram that can be exploited to detect the tampering. Of

course, by restoring the original histogram, detection becomes impossible.

A possible approach [110] consists in modifying iteratively the histogram,

through small changes in the image, making it as close as possible to the

histogram of a pristine image, and having care, at the same time, not to

degrade visibly the forged image. A similar technique has been subse-

quently proposed [111] and applied to attack a double-JPEG compression

detector. Other detectors tailored to speci�c features, like color �lter array

(CFA) artefacts, camera sensor noise and JPEG compression traces, have

also been attacked [112, 113] by means of direct injection, using feature

decomposition to limit complexity. Notice that changes on isolated image

samples or transform coe�cients impact on distortion in a simple way, al-

lowing for an easy enforcement of the distortion constraint. When working

on more elaborate features this is often not the case.

As a matter of fact, the most promising forgery detectors proposed in

the recent literature [114, 115, 116, 9] exploit higher-order statistics, re-

sorting to local descriptors, features computed on a neighborhood of the
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target pixels and working also on a pre-�ltered high-pass version of the

image. Both choices cause the feature associated with a pixel to depend

on the mutual relationship among groups of pixels. A notable example

is the rich-model descriptors [10], used originally for steganalysis, and

found to be very e�ective also for forgery detection [117] and localiza-

tion [40, 118, 119]. Since no hypotheses are made on the image tampering

process, machine learning detectors based on such features are typically

more general and robust than the previous generation. Moreover, with

such features, counter-forensics based on histogram restoration becomes

much more difucult. In fact, any change in the feature space impacts on a

whole group of pixels in the image space, hence on higher-order statistics,

and the relationship is typically non-linear, since quantization is part of

the feature generation process.

Statistical restoration has been long studied in steganalysis, with both

established theoretical results [120] and practical techniques [121]. In that

context, the higher-order restoration problem has been also considered by

Sarkar [122], for a detector based on second-order dependencies in the

DCT domain, using the earth-mover's distance (EMD) formulation, and

providing the optimum way of redistributing weights for restoration. Since

the problem has a high computational complexity, an heuristic algorithm

is proposed for actual implementation. To the best of our knowledge, the

only attempt to attack a LD-based image forgery detector is in a 2012

paper [123] where histogram restoration is performed in the feature space

to attack Shi's technique [114].

Since we focus, here, on machine learning methods, it is also worth con-

sidering adversarial machine learning (also known as adversarial pattern

recognition) where similar problems are encountered [124, 125], although

not related to image processing, in general, and forgery detection in par-

ticular. Especially relevant is the work of Biggio [100] dealing with the

detection of counterfeited pdf �les, where a problem similar to histogram
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restoration is solved by a gradient descent method. However, rather than

aiming at a speci�c feature associated with a genuine item, a more con-

venient feature is synthesized and pursued by the proposed algorithm,

which lies in the acceptance region of the detector just past the decision

boundary. This expedient allows for a much faster solution of the problem,

although some constraints are necessary to guarantee that the synthetic

feature corresponds to a valid pdf �le. An attack against a classi�er based

on Bag-of-Words has been recently used for image classi�cation [126], con-

sidering both sparse and dense features, showing that it is possible to

modi�y an image without a�ecting its quality and fooling the classi�er.

The attack consists essentially in replacing a certain number of selected

patches with similar ones belonging to a large dictionary of candidates.

Finally, it is worth mentioning an experiment carried out by Nguyen et

al. [127], where a state-of-the-art convolutional neural network is induced

to classify as "lion", with 99.99% con�dence, a properly mastered white

noise �eld, shading light on how much room remains for research in this

�eld.

4.2 Forgery Detection Counter-Forensics

Let X ∈X be a pristine image, with X the image space, for example

{0, . . . , 255}N , forN -pixel gray-scale images with 8-bit precision, andX0 ∈
X its forged version. Though immaterial for our purposes, we assume

that the forgery has been carried out with due skill, and hence it goes

undetected at a visual inspection. However, we assume it is detected with

high probability by a suitable machine-learning method based on a local

descriptor of the image. More precisely, to classify a generic image X,

the detector extracts in sequence the following pieces of information (see

Fig.2)

� residual image R, obtained for example, but not necessarily, through
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a high-pass linear �lter;

� local feature image F , including quantization and coding in the ex-

traction process;

� feature vector h = hist(F ), where hist is the histogram operator;

� estimated class Y c ∈ {−1,+1}, with −1 for pristine and +1 for

forged image.

Our former assumption on detector reliability translates, therefore, in the

detector decisions being with high probability Y c(X) = −1 and Y c(X0) =

+1. The attacker wants to process the forged image so as to a obtain a

modi�ed image X∗ which evades the detector, while remaining very similar

to the original X0. We consider two alternative scenarios

1. limited knowledge (LK): the attacker knows only the feature extrac-

tion process, but does not know the classi�er nor the training set

used to build it;

2. perfect knowledge (PK): the attacker knows not only the feature

extraction procedure but also the classi�er or the training set or

both.

Depending on which of these scenarios holds, the attacker follows two

slightly di�erent strategies.

4.2.1 Limited knowledge

In the LK case, the attacker does not know for sure what the detec-

tor will decide for any given input but, lacking any further information,

and assuming the detector is generally reliable, works on the reasonable

hypothesis that it will classify X as pristine and X0 as forged. Given

this minimal information, a possible strategy is to replace X0 with a new
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X R F h Y c
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Figure 4.2. Typical work�ow of an LD-based machine learning detector.
Image X is �ltered to obtain its high-pass residual, R, based on which the
feature �eld, F , is computed. Its histogram h is then fed to the classi�er.

image X∗ such that1 h(X∗) = h(X), as depicted symbolically in the left

part of Fig.3. Among the many modi�ed images respecting this constraint,

X∗ will be the one most similar to X0 under a suitable image distortion

measure φ : X ×X → R. More formally

X∗ = arg min
Z∈X

φ(Z,X0), s.t. h(Z) = h(X) (4.1)

This formulation presents two major problems. First of all, although there

are many feature images with the same histogram, not all of them corre-

spond to valid input images. Depending on the feature extraction process,

some combination of values are simply non achievable. Moreover, �nding

the set of images which respect the constraint of eq.4.1 is unfeasible in

practice, as it would require inverting the chain depicted in Fig.2, or else

analyzing a huge space of images.

However, since it is reasonable to expect that feature vectors close to

h(X) will have themselves a high probability of passing the test (see again

Fig.3), we can relax the constraint of eq.4.1, obtaining a more tractable

problem

Z∗ = arg min
Z∈X

φ(Z,X0), s.t. ψ(h(Z), h(X)) < Th (4.2)

1To avoid heavy notation, we use h(X), here, to mean h(F (X))
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where ψ : H ×H → R is a suitable distance de�ned on the space of

histograms H , and Th a suitable threshold value. Alternatively, we can

recast the problem as

Z∗ = arg min
Z∈X

ψ(h(Z), h(X)), s.t. φ(Z,X0) < TX (4.3)

switching the roles of image and feature spaces.

In this latter formulation, the constraint is easily satis�ed by sampling

the image space only in the appropriate region, e.g. a ball centered onX0 if

φ coincides with the L2 norm, or an hypercube if the L∞ norm is preferred.

Even so, the solution may still be unsatisfactory, that is, characterized by

a large distance in the feature space, and hence not passing the test. Even

assuming that X∗ is a satisfactory solution, the problem remains of how

to achieve it. A large number of algorithms can be used to obtain an

approximate solution through a suitable sampling schemes in the search

space, all characterized by exceedingly high complexity, however, for a

typical-sized image. To limit complexity, we propose an ad hoc heuristic,

described in subsection 3.4, where sampling is carried out in a space closer

to the decision, and hence the search path is more easily steered towards

the desired solution.

4.2.2 Perfect knowledge

Now, the attacker can rely on many more pieces of information, as

shown symbolically in the right part of Fig.3, where both the decision

boundary (that is the classi�er) and the labeled training samples are visi-

ble. Here we follow the approach of Biggio [100], with the obvious di�erence

that we cannot rely on a gradient descent algorithm. The image is hence

modi�ed so that the feature vector travels towards the decision boundary

approximately along the orthogonal path. In principle, the updating could

stop as soon as the boundary is crossed but this would be fragile w.r.t.
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Figure 4.3. Limited knowledge (left) and perfect knowledge (right) strate-
gies: in the �rst case, the attacker has no information on the detector and
aims at the histogram h(X) of the pristine image; in the second case, a
suitable synthetic histogram h∗ can be built and pursued.

possible changes in the detector. Therefore, we will consider a small safety

margin. The obvious advantage w.r.t. the LK case is that the path is

typically shorter, implying both a faster convergence and a lower distance

from X0.

If the detector is not known, but the labeled training set is, the al-

gorithm can point towards the closest point corresponding to a pristine

image, in which case, however, besides the slower convergence, there is no

guarantee to obtain the desired decision, since the training image itself

may be mis-classi�ed.

4.2.3 Greedy sampling algorithm

We describe here the sampling algorithm used to �nd an approximate

solution to the problem of eq.4.3. The solution is approximate both be-

cause the iterative procedure converges very slowly, calling for some early

stopping conditions before reaching the desired feature, and also because

its greedy nature implies that it can get trapped in some local minima.

In its basic form, the algorithm resembles the Iterated Cconditional Mode

(ICM) [128] and its variations.

The algorithm is initialized with the forged image X0. Then, in the
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generic i-th step, Xi is obtained by modifying only one pixel, call it the

target t, of the previous image, which is updated so as to maximize locally

the objective function. In formulas

Xi(p) =

{
arg minx(t) ψ(h(Z), h(Xi)) p = t

Xi−1(p) p 6= t
(4.4)

This basic step is then repeated until convergence, through some suitable

sampling scheme of the image. In particular, it is advisable not to pro-

ceed in raster-scan modality to avoid drift e�ects. Often a pseudo-random

scheme is considered, but in our case, given the feature extraction process,

we know in advance the footprint of a single-pixel change, so visit the im-

age on a regular grid, suitably large, and slide it by one pixel at each step.

Although the value of ψ(·, ·) is relatively simple to compute, because of the

limited footprint of any change, the overall complexity is still exceedingly

high. As a faster alternative, rather than minimizing the distance over

X(t), testing all possible values, we can select just one value at random

and check whether it reduces the distance, in which case it is accepted.

Better yet, when the feature extraction process is relatively simple, we can

work in a domain closer to the feature vector, either the residual image

or the local feature image, and select in advance only changes that are

very likely to reduce the feature distance, with a signi�cant reduction of

complexity.

We describe this idea by means of a running example. For the sake

of clarity, we select the very simple case of the LBP feature computed

over the image (not the residuals) without interpolation. However, with

suitable modi�cations, the same approach can be used in more complex

situations. Let us consider the image fragment depicted in Fig.4 (left) in

terms of digital numbers. For each point p, the LBP feature is computed
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Figure 4.4. A single step of the propose greedy procedure. The target t
is the center pixel of the image fragment (top-left). The corresponding LBP
string is 11010000, coded as 11 in the feature image (top-right). By increasing
the 5-th neighbor of t (bottom-left), the 5-th bit is �ipped, changing 11
(undesired) to 27 (desired). In the change footprint (blue, bottom-right):
together with the desired switch, there is also a switch from 31 to 17.

as

LBP(p) =

7∑
j=0

bj(p)2
j (4.5)

where

bj(p) =

{
0 X(p) ≤ X(ηj(p))

1 otherwise
(4.6)

and the ηj(p)'s are the 8-connected neighbors of p in raster scan order. By

applying these formulas on our example image, the string of bits associated
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with the target pixel t is b = 11010000 (we drop t from now on, for

notational simplicity), corresponding to F = 11. When considering pixel

t for updating, we inspect the frequency of occurrence of F , namely h(F ):

if it is already smaller than h∗(F ), the desired histogram, no updating

takes place. Otherwise, we inspect the features obtained by switching just

one bit of the string b, and keep the �rst one (if any) which reduces the

histogram distance. To obtain a switch on the j-th bit, we only have

to modify the value of X(ηj(t)), to change the sign of the di�erence w.r.t.

X(t). Before accepting this change, however, we must check its suitability:

it must not increase the distance betweenXi andX0 beyond the threshold,

and it must actually reduce the histogram distance, which is not certain

because a single pixel alteration impacts on 9 LBP values (its footprint,

the blue square in the bottom-right feature image). To simplify this check,

we use the L1 norm for the feature distance. If all controls are passed, the

change is accepted. Although still cumbersome, this procedure is much

faster than that in the image domain, since most of the selected changes

turn out to be acceptable, especially at the beginning.

Needless to say, working on residuals adds further complexity, and in

any case the implementation is ad hoc, strictly related to the selected

feature, and is not granted to work in all cases.

4.3 Experimental results

In this Section we present the results of some preliminary experiments

that, although limited in scope, provide much insight into the potential

of the proposed method. We consider two LD-based machine learning

detectors, the �rst one using LBP on the original image, called LBP256

in the following, and the second one computing 4-pixel co-occurrences on

the residuals of 3rd order liner �lter, as proposed in the reference paper

[10], and called S3SPAM from now on. Both SVM detectors have been
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Figure 4.5. Main performance indicators on image 35 of the test set for
the PK (left) and LK (right) scenarios.

trained on a dataset of 800 images of size 384×512 pixels, 400 pristine and
400 with random square forgeries (hence, not realistic), of various sizes

and processing history. Then, 800 more images of similar characteristics

are used as test set. These detectors were tested preliminarily on the

dataset of the First Forensic Challenge, providing a score, de�ned as the
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MaxSteps steps TPR PSNR / (min) Time

500 482 0.89 61.37 / (53.40) 300

1000 888 0.74 59.19 / (52.01) 629

1500 1196 0.47 57.81 / (50.43) 1001

2000 1367 0.23 57.36 / (50.35) 1298

2500 1451 0.11 56.90 / (49.40) 1555

3000 1490 0.05 56.79 / (49.40) 1650

∞ 1522 0.00 56.78 / (49.40) 1820

Table 4.1. Performance indicators for the S3SPAM-based detector, PK
scenario, averaged over 100 test images.

average probability of correct decision, of 0.86 and 0.91, respectively. On

our dataset, results were slightly worse, 0.80 and 0.89, with the detector

based on S3SPAM features keeping a clear lead over the simpler LBP-based

one. To test our counter-forensic methods we select in advance images that

are correctly recognized as forged by both detectors, and with the pristine

version recognized as pristine.

Before going to statistical analyses, however, in Fig.5, for one of such

images, we plot the main performance indicators as a function of the al-

gorithm progress. More precisely,we report on the x-axis the current step

of the algorithm, where each step corresponds to the visit of a target site

with possible local updating, and on the y-axis the current detector score

(left), image PSNR (middle), and CPU-time (right), for both the perfect

knowledge (top row) and limited knowledge (bottom row) scenarios. Con-

sider �rst the perfect knowledge case. The detector score, related to the

distance from the decision boundary, is initially positive, as expected for

a forged image, but then drops very quickly (less than 1000 steps) below

zero, indicating that the detector is now tricked into classifying the image

as pristine. However, before claiming the attack as successful, we must

verify that it has left basically unaltered the image, without introducing
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visible artifacts. Indeed, the center plot fully supports this case, since a

PSNR in the order of 60 dB (for LBP) or 70 dB (for S3SPAM) corre-

sponds to a very high-quality image. Alternative image quality indexes,

SSIM, FSIM, not shown here, provide similar indications. Finally,a sig-

ni�cant CPU-time is observed for the S3SPAM-based detector, due to the

need to re-classify the feature each time to compute the score and, not

last, to our current implementation in Matlab, certainly ine�cient.

In the limited-knowledge scenario things are much di�erent. The score

does not decrease monotonically anymore, because moves going towards

h(X) may occasionally increase the distance from the decision boundary.

In general, the convergence is much slower, and the score takes more than

3000 steps to become negative with the S3SPAM feature, and it never does

with LBP (the attack fails). These results may look surprising. With ref-

erence to Fig.3, they could be justi�ed only if the line from h(X0) to h(X)

traveled almost parallel to the decision hyperplane. In fact, this is exactly

the case: with features living in a space with hundreds of dimensions, the

line orthogonal to the boundary can explain only a tiny fraction of the

distance between two points, and hence most of the updates are just use-

less. With so many updating steps, also the PSNR decreases, but remains

always above a safe 50 dB limit. As a positive side, complexity decreases

signi�cantly w.r.t. the PK case.

These remarks are con�rmed by experiments on the full dataset. In par-

ticular, the counter-forensic attack has been applied to 100 images chosen

as said before. Results are reported in Tables I to IV. We draw attention

only on a few remarkable results: �rst of all, in the perfect knowledge

scenario, the attack has always success. The long time required for the

S3SPAM-based detector can be probably cut by 90% with a careful im-

plementation in a compiled language. Instead, in the limited knowledge

scenario, results are much worse, and the CPU time even larger. In all

cases, the PSNR remains pretty large, and in no instance goes below 40dB,
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MaxSteps steps TPR PSNR / (min) Time

500 140 0.80 57.60 / (49.60) 25

1000 165 0.40 54.10 / (46.60) 50

1500 173 0.20 51.70 / (45.00) 78

2000 179 0.01 49.90 / (43.70) 107

2500 184 0.01 48.70 / (42.70) 137

3000 185 0.00 47.90 / (41.90) 164

∞ 185 0.00 47.90 / (41.90) 164

Table 4.2. Performance indicators for the LBP-based detector, PK scenario,
averaged over 100 test images.

MaxSteps steps TPR PSNR / (min) Time

1000 992 0.92 61.47 / (55.56) 945

5000 4127 0.85 56.01 / (49.24) 1515

10000 7877 0.83 53.87 / (46.37) 1637

30000 22168 0.75 50.70 / (42.65) 2311

50000 31010 0.50 49.71 / (40.84) 3000

100000 37588 0.33 49.07 / (40.24) 3842

Table 4.3. Performance indicators for the S3SPAM-based detector, LK
scenario, averaged over 100 test images.

ensuring that the attack is not perceivable by visual inspection. To further

stress this point, we conclude by showing one of the images of Fig.1 after

our attack, both in the PK and LK scenarios. The output images appear

as identical, and identical to the original forged image. Although there

is much room for further research, and better algorithms can be certainly

singled out, our techniques provide already encouraging and sometimes

quite good results, attacking successfully some of the best image forgery

detectors proposed in recent years.
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Attacked Image with Perfect knowlegment Attacked Image with Limited knowlegment

Figure 4.6. Output image after counter-forensic attacks in the PK (left)
and LK (right) scenarios.
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Conclusions

This thesis deals with image source identi�cation. In particular, two

di�erent type of problems have been faced: PRNU-based blind image clus-

tering and camera model classi�cation. In both cases special attention has

been devoted to JPEG-compressed and resized images, so as to mimick the

processing operations that images undergo when posted on social networks.

For what concern the PRNU-based approach, after computing the im-

age noise residuals, correlation clustering and consensus clustering are used

to obtain a �rst conservative data partition, ideally free of false positives.

Then, an ad hoc re�nement algorithm is used to obtain the �nal clustering

by alternating PRNU estimate improvement and cluster merging. Results

on several datasets extracted from the Dresden database, both pristine and

resized/compressed, prove the proposed method to outperform the-state-

of-the-art and guarantee higher robustness to image quality impairments.

A remarkable feature of the proposed method is that no user intervention

is required, to provide parameters or external training sets. In addition,

by a judicious choice of clustering and estimation tools, the computational

complexity is always quite limited.

Then, we used the proposed algorithm to face forgery localization in

a blind scenario. After images have been clustered, PRNU is estimated

109
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and used to tell apart pristine images from forged ones by performing a

pixel-level analysis. Clearly, each step can be a possible source of error

and experimental analysis highlighted how performance degraded because

of the errors introduced at each single step. It turned out that for the orig-

inal images the performance of all clustering algorithms are high enough

to create clusters with a low false positive rate. This allows the forgery

detector to perform as well as in the ideal case. However, in the JPEG-

compressed dataset, a performance drop can be observed since the clus-

tering becomes less accurate and more fragmented. Further experiments

are certainly needed for a full assessment of the performance. In particu-

lar, since practical applications often deal with very large datasets (from

thousands to millions of images), a study of the algorithm behavior in the

presence of PRNU compression [129] or fast method [130] seems necessary.

For the camera model identi�cation problem, the use of co-occurrence

based features have been analyzed. Here a di�erent level of knowledge on

the training set and pre-processing on images is considered. Then a deep-

learning approach is shown to outperform all state-of-the-art methods,

giving promising results even with small patches.

Finally, the last chapter of this thesis is devoted to machine learning-

based counter-forensics and show that a malicious attacker, aware of the

speci�c features used by the system, can easily fool the detector. This

raises up security issues that should be addressed by the researchers in the

next years to provide more robust approaches.

In general, there are several open questions for future research. A �rst

issue is how to merge the PRNU traces with the camera model ones to

improve performance even in terms of speed and accuracy. The extension

to videos is also not trivial, not only for the di�erent nature of the data,

but also for the largely increased computational load. Another interesting

scenario arises if an expert attacker performs a counter-forensics approach

to fool the deep learning paradigm [131]. All such problems strongly stim-
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ulate research and make multimedia forensics one of the most attractive

topic in the signal processing �eld.
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