30 research outputs found

    Capture of manufacturing uncertainty in turbine blades through probabilistic techniques

    No full text
    Efficient designing of the turbine blades is critical to the performance of an aircraft engine. An area of significant research interest is the capture of manufacturing uncertainty in the shapes of these turbine blades. The available data used for estimation of this manufacturing uncertainty inevitably contains the effects of measurement error/noise. In the present work, we propose the application of Principal Component Analysis (PCA) for de-noising the measurement data and quantifying the underlying manufacturing uncertainty. Once the PCA is performed, a method for dimensionality reduction has been proposed which utilizes prior information available on the variance of measurement error for different measurement types. Numerical studies indicate that approximately 82% of the variation in the measurements from their design values is accounted for by the manufacturing uncertainty, while the remaining 18% variation is filtered out as measurement error

    Imputing Missing Values in Microarray Data with Ontology Information

    Get PDF
    [[abstract]]Microarray technology is a big step in bioinformatics. Hidden information within the large amounts of data provides scientists with molecular functions or essential biological meanings to study and analyze. However, these data often contain a certain portion of entities that are missing. Several methods to estimate these missing values are developed, but most of them are with disadvantages. In this paper, we propose a novel approach to deal with these missing values based on a practical similarity measurement between gene pairs. Our approach takes gene expression values and gene ontology (GO) information for genes into consideration. We implement our approach on a real microarray dataset and compare its imputation accuracy with other methods. Experimental results show that our approach can estimate missing values in microarray data effectively.[[conferencetype]]國際[[conferencedate]]20101218~20101221[[iscallforpapers]]Y[[conferencelocation]]Hong Kon

    Metaheuristic Algorithms to Enhance the Performance of a Feedforward Neural Network in Addressing Missing Hourly Precipitation

    Get PDF
    This research study investigates the implementation of three metaheuristic algorithms, namely, Grey wolf optimizer (GWO), Multi-verse optimizer (MVO), and Moth-flame optimisation (MFO), for coupling with a feedforward neural network (FNN) in addressing missing hourly rainfall observations, while overcoming the limitation of conventional training algorithm of artificial neural network that often traps in local optima. The proposed GWOFNN, MVOFNN, and MFOFNN were compared against the conventional Levenberg Marquardt Feedforward Neural Network (LMFNN) in addressing the artificially introduced missing hourly rainfall records of Kuching Third Mile Station. The findings show that the proposed approaches are superior to LMFNN in predicting the 20% hourly rainfall observations in terms of mean absolute error (MAE) and coefficient of correlation (r). The best performance ANN model is GWOFNN, followed with MVOFNN, MFOFNN and lastly LMFNN

    Metaheuristic Algorithms to Enhance the Performance of a Feedforward Neural Network in Addressing Missing Hourly Precipitation

    Get PDF
    This research study investigates the implementation of three metaheuristic algorithms, namely, Grey wolf optimizer (GWO), Multi-verse optimizer (MVO), and Moth-flame optimisation (MFO), for coupling with a feedforward neural network (FNN) in addressing missing hourly rainfall observations, while overcoming the limitation of conventional training algorithm of artificial neural network that often traps in local optima. The proposed GWOFNN, MVOFNN, and MFOFNN were compared against the conventional Levenberg Marquardt Feedforward Neural Network (LMFNN) in addressing the artificially introduced missing hourly rainfall records of Kuching Third Mile Station. The findings show that the proposed approaches are superior to LMFNN in predicting the 20% hourly rainfall observations in terms of mean absolute error (MAE) and coefficient of correlation (r). The best performance ANN model is GWOFNN, followed with MVOFNN, MFOFNN and lastly LMFNN

    Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme

    Get PDF
    BACKGROUND: Gene expression profiling has become a useful biological resource in recent years, and it plays an important role in a broad range of areas in biology. The raw gene expression data, usually in the form of large matrix, may contain missing values. The downstream analysis methods that postulate complete matrix input are thus not applicable. Several methods have been developed to solve this problem, such as K nearest neighbor impute method, Bayesian principal components analysis impute method, etc. In this paper, we introduce a novel imputing approach based on the Support Vector Regression (SVR) method. The proposed approach utilizes an orthogonal coding input scheme, which makes use of multi-missing values in one row of a certain gene expression profile and imputes the missing value into a much higher dimensional space, to obtain better performance. RESULTS: A comparative study of our method with the previously developed methods has been presented for the estimation of the missing values on six gene expression data sets. Among the three different input-vector coding schemes we tried, the orthogonal input coding scheme obtains the best estimation results with the minimum Normalized Root Mean Squared Error (NRMSE). The results also demonstrate that the SVR method has powerful estimation ability on different kinds of data sets with relatively small NRMSE. CONCLUSION: The SVR impute method shows better performance than, or at least comparable with, the previously developed methods in present research. The outstanding estimation ability of this impute method is partly due to the use of the most missing value information by incorporating orthogonal input coding scheme. In addition, the solid theoretical foundation of SVR method also helps in estimation of performance together with orthogonal input coding scheme. The promising estimation ability demonstrated in the results section suggests that the proposed approach provides a proper solution to the missing value estimation problem. The source code of the SVR method is available from for non-commercial use

    Bilinear probabilistic principal component analysis

    Get PDF
    Probabilistic principal component analysis (PPCA) is a popular linear latent variable model for performing dimension reduction on 1-D data in a probabilistic manner. However, when used on 2-D data such as images, PPCA suffers from the curse of dimensionality due to the subsequently large number of model parameters. To overcome this problem, we propose in this paper a novel probabilistic model on 2-D data called bilinear PPCA (BPPCA). This allows the establishment of a closer tie between BPPCA and its nonprobabilistic counterpart. Moreover, two efficient parameter estimation algorithms for fitting BPPCA are also developed. Experiments on a number of 2-D synthetic and real-world data sets show that BPPCA is more accurate than existing probabilistic and nonprobabilistic dimension reduction methods.published_or_final_versio
    corecore